首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701014--1)

带边模式光子晶体面发射半导体激光器研究进展

Research Advancement on Band-Edge Mode Photonic Crystal Surface-Emitting Semiconductor Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光子晶体面发射激光器(PCSEL)是一种可以实现极低发散角(小于1°)、高功率激光输出的新型半导体激光器,在激光雷达、空间通讯、传感和激光加工等领域有着重要的应用前景。由于产生谐振的方式不同,其可分为缺陷模式和带边模式两种类型,其中带边模式光子晶体面发射激光器具有更好的单模特性且易于二维集成等优点。鉴于此,简述带边模式光子晶体面发射激光器的基本原理与研究进展,在理论推导和几个实例的基础上,对如何提高带边模式光子晶体面发射激光器的输出功率进行论述,并提出一种新的功率增强方法,最后对带边模式光子晶体面发射激光器的发展趋势进行展望。

Abstract

Photonic crystal surface-emitting laser (PCSEL) is a new type of semiconductor laser, which can produce high-power laser emission with ultralow divergence (less than 1°). It has an important application prospect in light detection and ranging equipment, space communication, sensing and material processing. It can be divided into two types: defect mode and band-edge mode. The band-edge mode PCSEL has the following advantages: it has single-mode and easy two-dimensional integration. Therefore, the basic principle and research progress of band-edge mode of a PCSEL are briefly introduced in this study. Based on the theoretical derivation and several reported examples, how to improve the output power of a band-edge mode PCSEL is discussed and a new method of power enhancement is proposed. Finally, the development trend of a band-edge mode PCSEL is prospected.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.4

DOI:10.3788/CJL202047.0701014

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、国家重点研发计划、中国科学院国际合作项目;

收稿日期:2020-02-12

修改稿日期:2020-03-24

网络出版日期:2020-07-01

作者单位    点击查看

陆寰宇:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033中国科学院大学材料科学与光电研究中心, 北京 100049
佟存柱:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033
王子烨:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033中国科学院大学材料科学与光电研究中心, 北京 100049
田思聪:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033
汪丽杰:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033
佟海霞:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033中国科学院大学材料科学与光电研究中心, 北京 100049
李儒颂:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033中国科学院大学材料科学与光电研究中心, 北京 100049
王立军:中国科学院中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033

联系人作者:佟存柱(tongcz@ciomp.ac.cn)

备注:国家自然科学基金、国家重点研发计划、中国科学院国际合作项目;

【1】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters. 1987, 58(20): 2059-2062.

【2】John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters. 1987, 58(23): 2486-2489.

【3】Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals molding the flow of light[M]. New Jersey: , 2008.

【4】Chen Y Q, Wang J H. Laser principle[M]. Hangzhou: Zhejiang University Press, 1992.
陈钰清, 王静环. 激光原理[M]. 杭州: 浙江大学出版社, 1992.

【5】Streifer W, Scifres D, Burnham R. Coupled wave analysis of DFB and DBR lasers [J]. IEEE Journal of Quantum Electronics. 1977, 13(4): 134-141.

【6】Tong L M. Nanophotonics research frontier[M]. Shanghai: Shanghai Jiaotong University Press, 2014.
童利民. 纳米光子学研究前沿[M]. 上海: 上海交通大学出版社, 2014.

【7】Imada M, Chutinan A, Noda S, et al. Multi directionally distributed feedback photonic crystal lasers [J]. Physical Review B. 2002, 65(19): 195306.

【8】Noda S, Kojima K, Kyuma K, et al. Reduction of spectral linewidth in AlGaAs/GaAs distributed feedback lasers by a multiple quantum well structure [J]. Applied Physics Letters. 1987, 50(14): 863-865.

【9】Imada M, Noda S, Chutinan A, et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure [J]. Applied Physics Letters. 1999, 75(3): 316-318.

【10】Park Y, Kim S, Moon C, et al. Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal band edge laser [J]. Applied Physics Letters. 2007, 90(17): 171115.

【11】Hsu M Y, Lin G, Pan C H. Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers [J]. Optics Express. 2017, 25(26): 32697-32704.

【12】Liu S C, Zhao D Y, Yang H J, et al. Lateral size scaling of photonic crystal surface-emitting lasers on Si . [C]∥2017 Conference on Lasers and Electro-Optics (CLEO), May 14-19, 2017, San Jose, CA, USA. New York: IEEE. 2017, 17311500.

【13】Ohnishi D, Okano T, Imada M, et al. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser [J]. Optics Express. 2004, 12(8): 1562-1568.

【14】Hideki M, Susumu Y, Hirohisa S, et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths [J]. Science. 2008, 319(5862): 445-447.

【15】Hong G B, Yang J J, Lu T C, et al. Blue-violet GaN-based photonic crystal surface emitting lasers [J]. Chinese Optics. 2014, 7(4): 559-571.
洪国彬, 杨钧杰, 卢廷昌, 等. 蓝紫光氮化镓光子晶体面射型激光器 [J]. 中国光学. 2014, 7(4): 559-571.

【16】Pan C H, Lin C H, Chang T Y, et al. GaSb-based mid infrared photonic crystal surface emitting lasers [J]. Optics Express. 2015, 23(9): 11741-11747.

【17】Ra Y H, Rashid R T, Liu X H, et al. 6(1): eaav7523 . 2020.

【18】Noda S, Yokoyama M, Imada M, et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design [J]. Science. 2001, 293(5532): 1123-1125.

【19】Miyai E, Sakai K, Okano T, et al. Lasers producing tailored beams [J]. Nature. 2006, 441(7096): 946.

【20】Kurosaka Y, Iwahashi S, Liang Y, et al. On-chip beam-steering photonic-crystal lasers [J]. Nature Photonics. 2010, 4(7): 447-450.

【21】Iwahashi S, Kurosaka Y, Sakai K, et al. Sophisticated vector beams produced by photonic-crystal lasers . [C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California United States. Washington, D.C.: OSA. 2010, CTuO1.

【22】Chuang S L. Physics of photonic devices[M]. Singapore: , 2012.

【23】Sakaguchi T, Kunishi W, Arimura S, et al. Surface-emitting photonic-crystal laser with 35 W peak power . [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, May 31-June 5, 2009, Baltimore, Maryland United States. Washington, D.C.: OSA. 2009, CTuH1.

【24】Otsuka K, Sakai K, Kurosaka Y, et al. High-power surface-emitting photonic crystal laser . [C]∥LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, October 21-25, 2007, Lake Buena Vista, FL, USA. New York: IEEE. 2007, 562-563.

【25】Hirose K, Liang Y, Kurosaka Y, et al. Watt-class high-power, high-beam-quality photonic-crystal lasers [J]. Nature Photonics. 2014, 8(5): 406-411.

【26】Iwahashi S, Sakai K, Kurosaka Y, et al. Air-hole design in a vertical direction for high-power two-dimensional photonic-crystal surface-emitting lasers [J]. Journal of the Optical Society of America B. 2010, 27(6): 1204-1207.

【27】Yoshida M, de Zoysa M, Hatsuda R, et al. Elliptical double-hole photonic-crystal surface-emitting lasers . [C]∥2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017, Singapore. New York: IEEE. 2017, 17391778.

【28】de Zoysa M, Yoshida M, Ishizaki K, et al. 7 W CW operation of double-lattice photonic-crystal lasers . [C]∥2018 IEEE International Semiconductor Laser Conference (ISLC), September 16-19, 2018, Santa Fe, NM, USA. New York: IEEE. 2018, 18243144.

【29】Zheng W H, Wang Y F, Zhou W J, et al. Ultralow threshold lateral cavity photonic crystal surface-emitting laser [J]. Infrared and Laser Engineering. 2012, 41(12): 3198-3201.
郑婉华, 王宇飞, 周文君, 等. 超低阈值横向腔光子晶体面发射激光器 [J]. 红外与激光工程. 2012, 41(12): 3198-3201.

【30】Watanabe A, Sugiyama T, Kurosaka Y, et al. Single mode operation of edge-emitting semiconductor lasers with 2D photonic crystal . [C]∥2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), June 30-July 4, 2013, Kyoto, Japan. New York: IEEE. 2013, 13769169.

【31】Lu H Y, Tian S C, Tong C Z, et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band [J]. Light, Science & Applications. 2019, 8: 108.

【32】Zheng W H, Zhou W J, Wang Y F, et al. Lateral cavity photonic crystal surface-emitting laser with ultralow threshold [J]. Optics Letters. 2011, 36(21): 4140-4142.

【33】Wang Y F, Qu H W, Zhou W J, et al. Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer [J]. Optics Express. 2013, 21(7): 8844-8855.

【34】Baumann K, St?ferle T, Moll N, et al. Organic mixed-order photonic crystal lasers with ultrasmall footprint [J]. Applied Physics Letters. 2007, 91(17): 171108.

【35】Ge X C, Minkov M, Fan S H, et al. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide [J]. Nature Partner Journals 2D Materials and Applications. 2019, 3: 16.

【36】Zhen B, Hsu C W, Igarashi Y, et al. Spawning rings of exceptional points out of Dirac cones [J]. Nature. 2015, 525(7569): 354-358.

【37】Shao Z K, Chen H Z, Wang S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection [J]. Nature Nanotechnology. 2020, 15(1): 67-72.

引用该论文

Lu Huanyu,Tong Cunzhu,Wang Ziye,Tian Sicong,Wang Lijie,Tong Haixia,Li Rusong,Wang Lijun. Research Advancement on Band-Edge Mode Photonic Crystal Surface-Emitting Semiconductor Laser[J]. Chinese Journal of Lasers, 2020, 47(7): 0701014

陆寰宇,佟存柱,王子烨,田思聪,汪丽杰,佟海霞,李儒颂,王立军. 带边模式光子晶体面发射半导体激光器研究进展[J]. 中国激光, 2020, 47(7): 0701014

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF