首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201016--1)

基于减影图像与NSML的多焦点融合图像增强

Multifocus Fusion Image Enhancement Based on Image Subtraction Angiography and NSML

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有图像融合算法生成的融合结果质量不一、多数融合图像含有大量噪声的问题,提出一种融合图像增强方法。首先对源图像进行均值滤波并借助数字减影技术获得目标图像的显著区域,利用改进拉普拉斯算子对减影图像进行双尺度分解,得到对应的粗略聚焦区域和细化聚焦区域。然后根据像素级线性混合规则生成初始决策图,借助一致性检验算法对其进行细化以获得最终决策图。最后综合产生的结果重构新的融合图像。实验结果表明,所提方法不仅对现有融合算法生成的融合图像实现不同程度的增强,对噪声具有更强的鲁棒性,处理时间小于0.4 s;对待融合图像中小散焦或聚焦区域有更好的识别能力,识别的边缘信息更清晰光滑,并在客观指标上给出具体的验证结果。

Abstract

With the aim of denoising the results of the existing image-fusion algorithms and making them more uniform with respect to quality, we propose a fusion image enhancement method. First, the source image is mean-filtered and salient area of the target image is obtained using the digital subtraction technology. The subtracted image is then decomposed in two-scale using an improved Laplacian operator to obtain the corresponding coarse and refined focus areas. Further, an initial decision graph is generated according to the pixel-level linear mixing rules, and the final decision graph is obtained by refining the initial decision graph using the consistency check algorithm. Finally, the results are synthesized to reconstruct a new fusion image. Experimental results show that the proposed method achieves different degrees of enhancements of the fusion image generated using the existing fusion algorithms, the image has improved robustness to noise, and processing time is less than 0.4 s. The small defocus or focus area in the fusion image is more. With good recognition ability, the edge information of recognition increases in clarity and smoothness, and specific verification results are given for objective indicators.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.201016

所属栏目:图像处理

基金项目:国家自然科学基金、昆明理工大学慕课及金课建设项目;

收稿日期:2020-01-07

修改稿日期:2020-03-09

网络出版日期:2020-10-01

作者单位    点击查看

田帅:昆明理工大学信息工程与自动化学院, 云南 昆明 650500
任亚飞:昆明理工大学信息工程与自动化学院, 云南 昆明 650500
邵馨叶:昆明理工大学信息工程与自动化学院, 云南 昆明 650500佛罗里达理工学院科学与工程学院, 佛罗里达 墨尔本 32901
邵建龙:昆明理工大学信息工程与自动化学院, 云南 昆明 650500

联系人作者:邵建龙(sj-long@163.com)

备注:国家自然科学基金、昆明理工大学慕课及金课建设项目;

【1】Li S T, Kang X D, Fang L Y, et al. Pixel-level image fusion: a survey of the state of the art [J]. Information Fusion. 2017, 33: 100-112.

【2】Li H F, Li X S, Yu Z T, multiscale neighborhood[J]. Information Sciences, et al. 2016, 349/350: 25-49.

【3】Yuan J, Chen H, Sun F C, et al. Multisensor information fusion for people tracking with a mobile robot: a particle filtering approach [J]. IEEE Transactions on Instrumentation and Measurement. 2015, 64(9): 2427-2442.

【4】Tania S. Image fusion: algorithms and applications[M]. Pittsburgh: , 2008.

【5】Rockinger O. Image sequence fusion using a shift-invariant wavelet transform . [C]//Proceedings of International Conference on Image Processing, October 26-29, 1997, Santa Barbara, CA, USA. New York: IEEE. 1997, 288-291.

【6】Abdipour M, Nooshyar M. Multi-focus image fusion using sharpness criteria for visual sensor networks in wavelet domain [J]. Computers & Electrical Engineering. 2016, 51: 74-88.

【7】Chao R, Zhang K, Li Y J. An image fusion algorithm using wavelet transform [J]. Acta Electronica Sinica. 2004, 32(5): 750-753.
晁锐, 张科, 李言俊. 一种基于小波变换的图像融合算法 [J]. 电子学报. 2004, 32(5): 750-753.

【8】Burt P, Adelson E. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications. 1983, 31(4): 532-540.

【9】Toet A, van Ruyven L J, Valeton J M. Merging thermal and visual images by a contrast pyramid [J]. Proceedings of SPIE. 1989, 2877: 287789.

【10】Wang Y, Yang Y C, Dang J W, et al. Image fusion based on fuzzy logic combined with adaptive pulse coupled neural network in nonsubsampled Contourlet transform domain [J]. Laser & Optoelectronics Progress. 2019, 56(10): 101006.
王艳, 杨艳春, 党建武, 等. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合 [J]. 激光与光电子学进展. 2019, 56(10): 101006.

【11】Li J, Yang Y C, Dang J W, et al. Multi-focus image fusion based on NSCT and guided filtering [J]. Laser & Optoelectronics Progress. 2018, 55(7): 071007.
李娇, 杨艳春, 党建武, 等. 基于NSCT与引导滤波的多聚焦图像融合 [J]. 激光与光电子学进展. 2018, 55(7): 071007.

【12】Lü D, Jia Z H, Yang J, et al. Remote sensing image enhancement based on the combination of nonsubsampled shearlet transform and guided filtering [J]. Optical Engineering. 2016, 55(10): 103104.

【13】Zhu D R, Xu L, Wang F B, et al. Multi-focus image fusion algorithm based on fast finite shearlet transform and guided filter [J]. Laser & Optoelectronics Progress. 2018, 55(1): 011001.
朱达荣, 许露, 汪方斌, 等. 基于快速有限剪切波变换与引导滤波的多聚焦图像融合算法 [J]. 激光与光电子学进展. 2018, 55(1): 011001.

【14】Zhang Q, Liu Y, Blum R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review [J]. Information Fusion. 2018, 40: 57-75.

【15】Liu Y, Wang Z F. Simultaneous image fusion and denoising with adaptive sparse representation [J]. IET Image Processing. 2015, 9(5): 347-357.

【16】Liu Y, Chen X, Peng H, et al. Multi-focus image fusion with a deep convolutional neural network [J]. Information Fusion. 2017, 36: 191-207.

【17】Chen Q J, Li Y, Chai Y Z. A multi-focus image fusion algorithm based on depth learning [J]. Laser & Optoelectronics Progress. 2018, 55(7): 071015.
陈清江, 李毅, 柴昱洲. 一种基于深度学习的多聚焦图像融合算法 [J]. 激光与光电子学进展. 2018, 55(7): 071015.

【18】Zhang Y, Bai X Z, Wang T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure [J]. Information Fusion. 2017, 35: 81-101.

【19】Zhou Z Q, Li S, Wang B. Multi-scale weighted gradient-based fusion for multi-focus images [J]. Information Fusion. 2014, 20: 60-72.

【20】Chai Y, He Y, Qu C W. Multiscale image fusion algorithm based on subpixel weighted region energy [J]. Acta Optica Sinica. 2009, 29(10): 2732-2737.
柴勇, 何友, 曲长文. 基于亚像素区域加权能量特征的多尺度图像融合算法 [J]. 光学学报. 2009, 29(10): 2732-2737.

【21】Qiu X H, Li M, Zhang L Q, et al. Guided filter-based multi-focus image fusion through focus region detection [J]. Signal Processing: Image Communication. 2019, 72: 35-46.

【22】Bavirisetti D P, Xiao G, Zhao J H, et al. Multi-scale guided image and video fusion: a fast and efficient approach [J]. Circuits, Systems, and Signal Processing. 2019, 38(12): 5576-5605.

【23】Ma J L, Zhou Z Q, Wang B, et al. Multi-focus image fusion based on multi-scale focus measures and generalized random walk . [C]//2017 36th Chinese Control Conference (CCC), July 26-28, 2017, Dalian, China. New York: IEEE. 2017, 17171710.

【24】Li S T, Kang X D, Hu J W, et al. Image matting for fusion of multi-focus images in dynamic scenes [J]. Information Fusion. 2013, 14(2): 147-162.

【25】Nayar S K, Nakagawa Y. Shape from focus [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994, 16(8): 824-831.

【26】Yin M, Liu W, Zhao X, et al. A novel image fusion algorithm based on nonsubsampled shearlet transform [J]. Optik. 2014, 125(10): 2274-2282.

【27】Hossny M, Nahavandi S, Creighton D. A quadtree driven image fusion quality assessment . [C]//2007 5th IEEE International Conference on Industrial Informatics, June 23-27, 2007, Vienna, Austria. New York: IEEE. 2007, 419-424.

【28】Xydeas C, Petrovic V. Objective image fusion performance measure [J]. Electronics Letters. 2000, 36(4): 308-309.

【29】Ho T K, Hull J J, Srihari S N. Decision combination in multiple classifier systems [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994, 16(1): 66-75.

【30】Qu G H, Zhang D L, Yan P. Information measure for performance of image fusion [J]. Electronics Letters. 2002, 38(7): 313-315.

引用该论文

Tian Shuai,Ren Yafei,Shao Xinye,Shao Jianlong. Multifocus Fusion Image Enhancement Based on Image Subtraction Angiography and NSML[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201016

田帅,任亚飞,邵馨叶,邵建龙. 基于减影图像与NSML的多焦点融合图像增强[J]. 激光与光电子学进展, 2020, 57(20): 201016

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF