首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006002--1)

畸变光谱下光纤布拉格光栅传感网络波长检测优化方法

Wavelength Detection Optimization of Fiber Bragg Grating Sensing Networks Based on Distortion Spectrum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对光纤布拉格光栅(FBG)传感网络畸变光谱难以解调的问题,在超高斯光谱函数的基础上构造畸变光谱的理论函数,将畸变FBG传感网络光谱的解调问题转化为函数优化问题,提出了基于分布式估计算法的波长解调技术,并对已发生畸变的FBG传感网络进行解调实验。结果表明:分布式估计算法解调算法不仅能够在光谱畸变情况下保持较高的解调精度,其平均误差控制在1 pm以内,而且能够对光谱畸变的程度作出定量估计。与传统峰值检测解调技术相比,该方法解决了FBG传感网络畸变光谱波长难以解调的问题,为延长FBG传感网络使用寿命提供了新的途径,对提升FBG传感网络可靠性具有重要意义。

Abstract

To address the problem of difficulty in distortion specttum demodulation of fiber Bragg grating (FBG) based sensing networks,we propose a wavelength demodulation technique based on estimation using a distribution algorithm (EDA). We construct a theoretical function of distortion spectrum based on the super Gaussian function and transform the wavelength detection problem of the distorted FBG sensing network into a function optimization problem. The proposed method is used to demodulate the distortion spectrum of a FBG sensing network through an experiment. The results denote that EDA can not only maintain an average detection accuracy within 1 pm even when the spectrum of FBG is distorted but also quantitatively estimate the distortion degree of FBG. When compared with the traditional peak detection methods, the proposed method can effectively identify the Bragg wavelength from a distortion spectrum. The proposed method provides a novel method to extend the service life and enhance the reliability of an FBG sensor network.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1006002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、福建省自然科学基金面上项目、福建省教育厅中青年科研项目、福建省高校青年自然科学基金重点项目、福州大学引进人才科研启动项目、福建省高校杰出青年科研人才计划;

收稿日期:2019-01-21

修改稿日期:2019-06-03

网络出版日期:2019-10-01

作者单位    点击查看

江灏:福州大学电气工程与自动化学院, 福建 福州 350108福州大学电力系统与装置产业研究院, 福建 福州 350108福建省医疗器械和医药技术重点实验室, 福建 福州 350108
周清旭:福州大学电气工程与自动化学院, 福建 福州 350108福州大学电力系统与装置产业研究院, 福建 福州 350108
陈静:福州大学电气工程与自动化学院, 福建 福州 350108福州大学电力系统与装置产业研究院, 福建 福州 350108
缪希仁:福州大学电气工程与自动化学院, 福建 福州 350108福州大学电力系统与装置产业研究院, 福建 福州 350108

联系人作者:陈静(chenj@fzu.edu.cn)

备注:国家自然科学基金、福建省自然科学基金面上项目、福建省教育厅中青年科研项目、福建省高校青年自然科学基金重点项目、福州大学引进人才科研启动项目、福建省高校杰出青年科研人才计划;

【1】Qiu Y, Wang Q B, Zhao H T et al. Review on composite structural health monitoring based on fiber Bragg grating sensing principle [J]. Journal of Shanghai Jiaotong University (Science). 2013, 18(2): 129-139.

【2】Xu G Q and Xiong D Y. Applications of fiber Bragg grating sensing technology in engineering [J]. Chinese Optics. 2013, 6(3): 306-317.
徐国权, 熊代余. 光纤光栅传感技术在工程中的应用 [J]. 中国光学. 2013, 6(3): 306-317.

【3】Reynders E. Wursten G, de Roeck G. Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification [J]. Structural Health Monitoring. 2014, 13(1): 82-93.

【4】Tian S Z, Qiu W C, Wen K et al. Application research on FBG sensor in the monitoring of fracture and damage [J]. Laser Technology. 2017, 41(1): 129-132.
田石柱, 邱伟宸, 温科 等. FBG传感器关于裂缝及损伤的监测应用研究 [J]. 激光技术. 2017, 41(1): 129-132.

【5】Zhang X P, Wu J L, Shan Y Y et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fiber sensing technology [J]. Optoelectronic Technology. 2017, 37(4): 221-229.
张旭苹, 武剑灵, 单媛媛 等. 基于分布式光纤传感技术的智能电网输电线路在线监测 [J]. 光电子技术. 2017, 37(4): 221-229.

【6】Jia D G, Zhang Y L, Chen Z T et al. A self-healing passive fiber Bragg grating sensor network [J]. Journal of Lightwave Technology. 2015, 33(10): 2062-2067.

【7】Zhang X L, Wang P, Liang D K et al. A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction [J]. Optics Communications. 2015, 343: 38-46.

【8】Zhang J, Zeng J, Wang B et al. The research on optic fiber FBG corrosion sensor based on the analysis of the spectral characteristics [J]. Spectroscopy and Spectral Analysis. 2016, 36(3): 853-856.
张俊, 曾捷, 王博 等. 基于光谱特征分析的光纤光栅腐蚀传感器研究 [J]. 光谱学与光谱分析. 2016, 36(3): 853-856.

【9】Ang J. Li H C H, Herszberg I, et al. Tensile fatigue properties of fibre Bragg grating optical fibre sensors [J]. International Journal of Fatigue. 2010, 32(4): 762-768.

【10】Pal S. Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B-Ge co-doped fiber [J]. Optics Communications. 2006, 262(1): 68-76.

【11】Wu J, Chen W M, Zhang Y L et al. Affect mechanism and experimental research on performance degeneration of FBG under the action of alternate temperature test [J]. Journal of Optoelectronics·Laser. 2010, 21(9): 1301-1305.
吴俊, 陈伟民, 张娅玲 等. 交替温度对FBG性能蜕化的影响机理及试验研究 [J]. 光电子·激光. 2010, 21(9): 1301-1305.

【12】Zhang Y L, Chen W M, Zhang P et al. Research of abnormal demodulation on multiplex FBG sensors [J]. Optics & Optoelectronic Technology. 2009, 7(3): 25-28.
张娅玲, 陈伟民, 章鹏 等. FBG传感器复用解调异常的研究 [J]. 光学与光电技术. 2009, 7(3): 25-28.

【13】Wang L Q, Miao C Y and Zhang C. Demodulation method of fiber Bragg grating pulse wave based on micro-structure Fabry-Perot interferometer [J]. Chinese Journal of Lasers. 2017, 44(10): 1004002.
王丽清, 苗长云, 张诚. 基于微结构法布里-珀罗干涉仪的光纤光栅脉搏波解调方法 [J]. 中国激光. 2017, 44(10): 1004002.

【14】Jiang H, Chen J, Liu T D et al. Design of an FBG sensor network based on Pareto multi-objective optimization [J]. IEEE Photonics Technology Letters. 2013, 25(15): 1450-1453.

【15】Jiang H, Chen J, Liu T D et al. A novel wavelength detection technique of overlapping spectra in the serial WDM FBG sensor network [J]. Sensors and Actuators A: Physical. 2013, 198: 31-34.

【16】Jiang H, Chen J and Liu T D. Multi-objective design of an FBG sensor network using an improved Strength Pareto Evolutionary Algorithm [J]. Sensors and Actuators A: Physical. 2014, 220: 230-236.

【17】Chen J, Jiang H, Liu T D et al. Wavelength detection in FBG sensor networks using least squares support vector regression [J]. Journal of Optics. 2014, 16(4): 045402.

【18】Jiang H, Chen J and Liu T D. Wavelength detection in spectrally overlapped FBG sensor network using extreme learning machine [J]. IEEE Photonics Technology Letters. 2014, 26(20): 2031-2034.

【19】Chen J, Lin Y T, Zhou Q X et al. Wavelength demodulation of a spectrally overlapped fiber Bragg grating sensor network based on peak match estimation of distribution algorithm [J]. Acta Photonica Sinica. 2019, 48(4): 0406002.
陈静, 林雅婷, 周清旭 等. 基于峰值匹配分布式估计算法的光纤布拉格光栅传感网络重叠光谱的波长解调 [J]. 光子学报. 2019, 48(4): 0406002.

【20】Yang Q, Chen W N, Li Y et al. Multimodal estimation of distribution algorithms [J]. IEEE Transactions on Cybernetics. 2017, 47(3): 636-650.

【21】Wang S Y, Wang L, Fang C et al. Advances in estimation of distribution algorithms [J]. Control and Decision. 2012, 27(7): 961-966, 974.
王圣尧, 王凌, 方晨 等. 分布估计算法研究进展 [J]. 控制与决策. 2012, 27(7): 961-966, 974.

【22】Kirikera G R, Balogun O and Krishnaswamy S. Adaptive fiber Bragg grating sensor network for structural health monitoring: applications to impact monitoring [J]. Structural Health Monitoring. 2011, 10(1): 5-16.

【23】Yu J J, Zheng Y J, Ruan X G et al. Parameter optimization of trajectory imitation learning characterization based on Gaussian mixture model [J]. Journal of Beijing University of Technology. 2017, 43(5): 719-728.
于建均, 郑逸加, 阮晓钢 等. 基于高斯混合模型的轨迹模仿学习表征参数优化 [J]. 北京工业大学学报. 2017, 43(5): 719-728.

引用该论文

Jiang Hao,Zhou Qingxu,Chen Jing,Miao Xiren. Wavelength Detection Optimization of Fiber Bragg Grating Sensing Networks Based on Distortion Spectrum[J]. Acta Optica Sinica, 2019, 39(10): 1006002

江灏,周清旭,陈静,缪希仁. 畸变光谱下光纤布拉格光栅传感网络波长检测优化方法[J]. 光学学报, 2019, 39(10): 1006002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF