首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1004001--1)

激光损伤残余应力三维检测技术

Three-Dimensional Detection Technology of Laser Damage Residual Stress

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了准确测量残余应力的分布情况,提出一种基于反射式暗场白光数字全息的残余应力三维检测技术。该技术将激光损伤点附近区域沿着轴向以数值化的形式离散成多层,每层的暗场反射光强度正比于该层光学双折射的轴向梯度,因此利用白光数字全息测量每层暗场反射光强度,即可结合光弹效应重建各层的剪切应力。通过对激光损伤的熔石英玻璃测量,实际验证所提技术可以对样品的三维残余应力分布进行准确重建,且轴向分辨率可达10 μm。实验结果表明,所提技术可以提高加工工艺和衡量产品的质量。

Abstract

To accurately measure the residual stress distribution, a reflective dark-field white light digital holography-based three-dimensional (3D) residual stress detection technology is proposed herein. This technology discretizes the area near the laser damage point into multiple layers in a numerical manner along the axis. The intensity of the dark-field reflected light of each layer is proportional to the axial gradient of the optical birefringence of the layer. Therefore, white-light digital holography is used to measure each layer. By measuring the reflected light intensity of each layer dark field with white light digital holography, the shear stress of each layer can be reconstructed by combining the photoelastic effect. Through the measurement of laser-damaged fused silica glass, it is verified that the proposed technique can accurately reconstruct the three-dimensional residual stress distribution of the sample, and the axial resolution can reach 10 μm. Experimental results show that the proposed technology can improve processing technology and also measure the quality of products.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O343

DOI:10.3788/CJL202047.1004001

所属栏目:测量与计量

基金项目:国家自然科学基金、江苏省自然科学基金、中央高校基本科研业务费专项;

收稿日期:2020-03-13

修改稿日期:2020-04-28

网络出版日期:2013-10-01

作者单位    点击查看

齐乃杰:江南大学理学院计算光学实验室, 江苏 无锡 214122
袁晓东:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
张丽娟:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
刘诚:江南大学理学院计算光学实验室, 江苏 无锡 214122中国科学院上海光学精密机械研究所, 上海 201800

联系人作者:刘诚(chengliu@siom.ac.cn)

备注:国家自然科学基金、江苏省自然科学基金、中央高校基本科研业务费专项;

【1】He D B, Kang S, Zhang L Y, et al. Research and development of new neodymium laser glasses [J]. High Power Laser Science and Engineering. 2017, 5: e1.

【2】Seidel M, Arisholm G, Brons J, et al. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses [J]. Optics Express. 2016, 24(9): 9412-9428.Seidel M, Arisholm G, Brons J, et al. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses [J]. Optics Express. 2016, 24(9): 9412-9428.

【3】Bowers M, Wisoff J, Herrmann M, et al. Status of NIF laser and high power laser research at LLNL [J]. Proceedings of SPIE. 2017, 1008: 1008403.Bowers M, Wisoff J, Herrmann M, et al. Status of NIF laser and high power laser research at LLNL [J]. Proceedings of SPIE. 2017, 1008: 1008403.

【4】Ledingham K W D, Galster W. Laser-driven particle and photon beams and some applications [J]. New Journal of Physics. 2010, 12(4): 045005.Ledingham K W D, Galster W. Laser-driven particle and photon beams and some applications [J]. New Journal of Physics. 2010, 12(4): 045005.

【5】Liu X M, Li Y, Zhang Y J, et al. Collisionless shockwaves formed by counter-streaming laser-produced plasmas [J]. New Journal of Physics. 2011, 13(9): 093001.

【6】Hora H, Korn G, Giuffrida L, et al. Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses: ERRATUM [J]. Laser and Particle Beams. 2015, 33(4): 773.

【7】Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide [J]. High Power Laser Science and Engineering. 2015, 3(1): e3.

【8】Sharma A, Yadava V. Experimental analysis of Nd-YAG laser cutting of sheet materials-a review [J]. Optics & Laser Technology. 2018, 98: 264-280.

【9】Weingarten C, Schmickler A, Willenborg E, et al. Laser polishing and laser shape correction of optical glass [J]. Journal of Laser Applications. 2017, 29(1): 011702.

【10】Pinkerton A J. Lasers in additive manufacturing [J]. Optics & Laser Technology. 2016, 78: 25-32.

【11】Conder A, Chang J, Kegelmeyer L, et al. Final optics damage inspection (FODI) for the National Ignition Facility [J]. Proceedings of SPIE. 2010, 7797: 77970P.

【12】Yin X H, Zhang G W, Zhou S L, et al. Criteria study of laser induced damage [J]. Laser & Optoelectronics Progress. 2012, 49(1): 011404.
尹宪华, 张国文, 周申蕾, 等. 激光损伤机理判断研究 [J]. 激光与光电子学进展. 2012, 49(1): 011404.

【13】Glass A J, Guenther A H. Laser induced damage of optical elements-a status report [J]. Applied Optics. 1973, 12(4): 637-649.

【14】Cao Z, He H B, Hu G H, et al. Time-resolved investigation of multiple-pulse laser-induced bulk damage in fused silica [J]. Chinese Journal of Lasers. 2019, 46(8): 0803001.
曹珍, 贺洪波, 胡国行, 等. 多脉冲激光诱导熔石英体损伤的时间分辨研究 [J]. 中国激光. 2019, 46(8): 0803001.

【15】Shan C, Zhao Y A, Zhang X H, et al. Study on laser damage threshold of optical element surface based on gaussian pulsed laser spatial resolution [J]. Chinese Journal of Lasers. 2018, 45(1): 0104002.
单翀, 赵元安, 张喜和, 等. 基于高斯脉冲激光空间分辨测量光学元件表面激光损伤阈值研究 [J]. 中国激光. 2018, 45(1): 0104002.

【16】Li T T, Zhang M J, Tian K Z, et al. Femtosecond laser-induced damage on Ge-Sb-S chalcogenide glass [J]. Acta Optica Sinica. 2019, 39(10): 1016001.
李铜铜, 张鸣杰, 田康振, 等. Ge-Sb-S硫系玻璃的飞秒激光诱导损伤研究 [J]. 光学学报. 2019, 39(10): 1016001.

【17】Chambonneau M, Diaz R, Grua P, et al. Origin of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses [J]. Applied Physics Letters. 2014, 104(2): 021121.

【18】Demos S, Staggs M, Minoshima K, et al. Characterization of laser induced damage sites in optical components [J]. Optics Express. 2002, 10(25): 1444-1450.

【19】Hu G H, Zhao Y A, Li D W. Technology and mechanism of CO2 laser treatment for mitigating surface damage growth [J]. Acta Optica Sinica. 2011, 31(8): 0814001.
胡国行, 赵元安, 李大伟. 抑制损伤发展的CO2激光修复技术及机理研究 [J]. 光学学报. 2011, 31(8): 0814001.

【20】Mendez E, Nowak K M, Baker H J, et al. Localized CO2 laser damage repair of fused silica optics [J]. Applied Optics. 2006, 45(21): 5358-5367.

【21】Cormont P, Gallais L, Lamaignère L, et al. Impact of two CO2 laser heatings for damage repairing on fused silica surface [J]. Optics Express. 2010, 18(25): 26068-26076.

【22】Li X B, Wang H J, Yuan X D, et al. Effects of CO2 laser irradiation on surface morphology and stress distribution of fused silica [J]. Chinese Journal of Lasers. 2011, 38(9): 0903002.
李熙斌, 王海军, 袁晓东, 等. CO2激光辐照对熔石英表面形貌与应力分布的影响 [J]. 中国激光. 2011, 38(9): 0903002.

【23】Narayanamurthy C S, Pedrini G, Osten W. Digital holographic photoelasticity [J]. Applied Optics. 2017, 56(13): 213-217.

【24】Wong L, Suratwala T, Feit M D, et al. The effect of HF/NH4F etching on the morphology of surface fractures on fused silica [J]. Journal of Non-Crystalline Solids. 2009, 355(13): 797-810.

【25】Zhang Y, Xu Y S, You C Y, et al. Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses [J]. Optics Express. 2017, 25(8): 8886-8895.

【26】Dahmani F, Lambropoulos J C, Schmid A W, et al. Nanoindentation technique for measuring residual stress field around a laser-induced crack in fused silica [J]. Journal of Materials Science. 1998, 33(19): 4677-4685.

【27】Zhang Z, Liu H J, Huang J, et al. Residual stress near cracks of K9 and fused silica under 1064 nm nanosecond laser irradiation [J]. Optical Engineering. 2012, 51(11): 114201.

【28】Gallais L, Cormont P, Rullier J. Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation [J]. Optics Express. 2009, 17(26): 23488-23501.

【29】Masters B R, Boyd R W. Nonlinear optics[M]. Massachusetts: , 2009.

【30】Sakakura M, Terazima M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass [J]. Physical Review B. 2005, 71(2): 024113.

【31】Kuske A, Robertson G. Photoelastic stress analysis [M]. London: Wiley. 1974.

引用该论文

Qi Naijie,Yuan Xiaodong,Zhang Lijuan,Liu Cheng. Three-Dimensional Detection Technology of Laser Damage Residual Stress[J]. Chinese Journal of Lasers, 2020, 47(10): 1004001

齐乃杰,袁晓东,张丽娟,刘诚. 激光损伤残余应力三维检测技术[J]. 中国激光, 2020, 47(10): 1004001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF