首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201505--1)

基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法

Parallel FPN Algorithm Based on Cascade R-CNN for Object Detection from UAV Aerial Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在目标检测领域,小目标的检测识别一直都是研究的难点,导致模型提取到的特征并不具有良好的表达能力,因此对小目标的检测结果不佳。为此,提出一种基于特征金字塔网络(FPN)的改进算法。在原有基础上增加并行分支,再融合两种不同上采样方法的特征信息以加强小目标特征的表达能力。同时,增加多阈值检测器(Cascade R-CNN)强化小目标定位能力。基于无人机航拍数据集进行实验,实验结果表明,在MS COCO数据集下,所提算法的平均精确率相比原始FPN算法提高了9.7个百分点,具有良好的检测性能。

Abstract

The detection and recognition of small targets are always difficult for researchers in the field of target detection, resulting in the feature extracted from the model not having good expression ability, so the detection result of small targets is poor. This paper presents a modified algorithm based on feature pyramid network(FPN). Specifically, the parallel branch is devised on the original basis to fuse the feature information of two different up-sampling methods to enhance the representation ability of small objects. Meanwhile, a multiple threshold detector named Cascade R-CNN is added to prompt the localization ability of small objects. Experiments are conducted on UAV aerial image datasets. The experimental results reveal that the average precision of the proposed algorithm under MS COCO dataset increases by 9.7 percentage compared to that of the initial FPN algorithm; hence, the proposed algorithm has a good detection performance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751

DOI:10.3788/LOP57.201505

所属栏目:机器视觉

基金项目:山西省研究生教育创新项目;

收稿日期:2019-12-10

修改稿日期:2020-02-25

网络出版日期:2020-10-01

作者单位    点击查看

刘英杰:中北大学信息与通信工程学院, 山西 太原 030051
杨风暴:中北大学信息与通信工程学院, 山西 太原 030051
胡鹏:中北大学信息与通信工程学院, 山西 太原 030051

联系人作者:杨风暴(yfengb@163.com)

备注:山西省研究生教育创新项目;

【1】Introduction to UAV systems[M]. Wu H P: Shi Z S, Ding Y F, et al, Transl. 2nd ed. Beijing: Electronic Industry Press, 2003.
Fahlstrom P G, Gleason T J, Fahlstrom P G, Gleason T J. 无人机系统导论[M]. 吴汉平: 施自胜, 丁亚非, 等, 译. 二版. 北京:电子工业出版社, 2003.

【2】Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision. 2004, 60(2): 91-110.Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision. 2004, 60(2): 91-110.

【3】Dalal N, Triggs B. Histograms of oriented gradients for human detection . [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR''''05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE. 2005, 886-893.

【4】Felzenszwalb P. McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model . [C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE. 2008, 1-8.

【5】Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation . [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE. 2014, 580-587.

【6】Girshick R. Fast R-CNN[EB/OL]. -09-27)[2019-12-09] . https:∥arxiv. 2015, org/abs/1504: 08083.

【7】Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 779-788.

【8】Redmon J, Farhadi A. YOLO9000: better, faster, stronger . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 6517-6525.

【9】Redmon J. -04-08)[2019-12-09] . https:∥arxiv. 2018, org/abs/1804: 02767.

【10】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(6): 1137-1149.

【11】Feng X Y, Mei W, Hu D S. Aerial target detection based on improved Faster R-CNN [J]. Acta Optica Sinica. 2018, 38(6): 0615004.
冯小雨, 梅卫, 胡大帅. 基于改进Faster R-CNN的空中目标检测 [J]. 光学学报. 2018, 38(6): 0615004.

【12】Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector [M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer. 2016, 9905: 21-37.

【13】Hua X, Wang X Q, Wang D, et al. Multi-objective detection of traffic scenes based on improved SSD [J]. Acta Optica Sinica. 2018, 38(12): 1215003.
华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测 [J]. 光学学报. 2018, 38(12): 1215003.

【14】Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 936-944.

【15】Cai Z W, Vasconcelos N. Cascade R-CNN: delving into high quality object detection . [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2018, 6154-6162.

【16】Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context [M]. ∥Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science. Cham: Springer. 2014, 8693: 740-755.

【17】Zhu P F, Wen L Y, Bian X, et al. -04-23)[2019-12-09] . https:∥arxiv. 2018, org/abs/1804: 07437.

【18】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 770-778.

【19】Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020, 42(2): 318-327.

【20】Dai J F, Li Y, He K M, et al. R-FCN: object detection via region-based fully convolutional networks . [C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems, December 5-10, Barcelona, Spain. New York: Curran Associates. 2016, 379-387.

引用该论文

Liu Yingjie,Yang Fengbao,Hu Peng. Parallel FPN Algorithm Based on Cascade R-CNN for Object Detection from UAV Aerial Images[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201505

刘英杰,杨风暴,胡鹏. 基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法[J]. 激光与光电子学进展, 2020, 57(20): 201505

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF