首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1108001--1)

集成量子压缩光源中MgO∶LiNbO3晶体倍频系统研究

Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于掺氧化镁铌酸锂晶体,采用临界相位匹配技术以及半整块腔型结构进行外腔倍频实验并制备了532 nm激光。对热透镜效应引起的倍频腔模式失配进行了理论分析。在较高基频光注入倍频腔时,通过重新进行模式匹配,缓解了模式失配对倍频转换效率的影响,最终可实现最大倍频转换效率为(49.3±0.45)%的倍频过程,对应输出功率为567.0 mW。通过模式清洁器改善了输出532 nm激光的光束质量并有效降低了其强度噪声,最终实现了输出功率为470 mW、光束质量因子为1.05的低噪声532 nm激光,其在分析频率1.65 MHz处达到散粒噪声极限。此倍频系统结构紧凑,输出功率稳定,可为集成量子压缩光源提供有效泵浦光场,在量子精密测量以及量子信息科学等领域中发挥重要作用。

Abstract

Based on the MgO∶LiNbO3 crystal, the critical phase matching technology and the semi-monolithic cavity structure are used to perform external cavity frequency doubling and generate 532 nm laser. The mismatch of the frequency-doubling cavity modes caused by the thermal lens effect is theoretically analyzed. When the higher fundamental frequency light is injected into the frequency-doubling cavity, the mode matching is performed again to mitigate the effect of mode mismatch on the frequency doubling conversion efficiency. Finally, the frequency doubling process with the maximum frequency doubling conversion efficiency of (49.3±0.45)% is achieved and the corresponding output power is 567.0 mW. Furthermore, the model cleaner can not only improve the 532 nm laser beam quality but also reduce the intensity noise to realize the output power of 470 mW and the beam quality factor of 1.05 for the low-noise green laser, whose shot noise limit is reached at an analysis frequency of 1.65 MHz. The whole frequency doubling system possesses a compact structure, a stable output power, and can supply an effective pump field for the quantum squeezed light source, and thus it can play an important role in quantum precision measurement and quantum information fields.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:A

DOI:10.3788/CJL202047.1108001

所属栏目:非线性光学

基金项目:国家自然科学基金、国家重点研发计划、山西省三晋学者特聘教授项目、山西省重点研发计划、山西省“1331”重点建设学科、山西省高等学校中青年拔尖创新人才、山西省应用基础研究计划、陕西省自然科学基础研究计划项目;

收稿日期:2020-06-08

修改稿日期:2020-07-02

网络出版日期:2020-11-01

作者单位    点击查看

田宇航:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
王俊萍:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
杨文海:中国空间技术研究院西安分院, 陕西 西安 710100
田龙:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
王雅君:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
郑耀辉:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:田龙(tianlong@sxu.edu.cn)

备注:国家自然科学基金、国家重点研发计划、山西省三晋学者特聘教授项目、山西省重点研发计划、山西省“1331”重点建设学科、山西省高等学校中青年拔尖创新人才、山西省应用基础研究计划、陕西省自然科学基础研究计划项目;

【1】Yan Z H, Wu L, Jia X J, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles [J]. Nature Communications. 2017, 8: 718.Yan Z H, Wu L, Jia X J, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles [J]. Nature Communications. 2017, 8: 718.

【2】Vahlbruch H, Mehmet M, Lastzka N, et al. Observation of squeezed light with 10-dB quantum-noise reduction [J]. Physical Review Letters. 2008, 100(3): 033602.Vahlbruch H, Mehmet M, Lastzka N, et al. Observation of squeezed light with 10-dB quantum-noise reduction [J]. Physical Review Letters. 2008, 100(3): 033602.

【3】Dwyer S, Barsotti L, Chua S, et al. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light [J]. Optics Express. 2013, 21(16): 19047-19060.Dwyer S, Barsotti L, Chua S, et al. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light [J]. Optics Express. 2013, 21(16): 19047-19060.

【4】Zhang T, Goh K W, Chou C, et al. Quantum teleportation of light beams [J]. Physical Review A. 2003, 67(3): 033802.

【5】Sun X C, Wang Y J, Tian L, et al. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise [J]. Optics Letters. 2019, 44(7): 1789-1792.

【6】Niu N, Qu D P, Dou W, et al. 348.9 nm intra-cavity frequency-doubling ultraviolet laser in blue laser diode pumped Pr∶YLF crystal [J]. Chinese Journal of Lasers. 2018, 45(12): 1201003.
牛娜, 曲大鹏, 窦微, 等. 蓝光二极管抽运掺镨氟化钇锂晶体腔内倍频348.9 nm紫外激光器 [J]. 中国激光. 2018, 45(12): 1201003.

【7】Cui X Y, Shen Q, Yan M C, et al. High-power 671 nm laser by second-harmonic generation with 93% efficiency in an external ring cavity [J]. Optics Letters. 2018, 43(8): 1666-1669.

【8】Yao X C, Chen H Z, Wu Y P, et al. Observation of coupled vortex lattices in a mass-imbalance Bose and fermi superfluid mixture [J]. Physical Review Letters. 2016, 117(14): 145301.

【9】Guo S L, Ge Y L, Han Y S, et al. Investigation of optical inhomogeneity of MgO∶PPLN crystals for frequency doubling of 1560 nm laser [J]. Optics Communications. 2014, 326: 114-120.

【10】Dingjan J, Darquié B, Beugnon J, et al. A frequency-doubled laser system producing ns pulses for rubidium manipulation [J]. Applied Physics B. 2006, 82(1): 47-51.Dingjan J, Darquié B, Beugnon J, et al. A frequency-doubled laser system producing ns pulses for rubidium manipulation [J]. Applied Physics B. 2006, 82(1): 47-51.

【11】Bakr W, Gillen J, Peng A, et al. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J]. Nature. 2009, 462(7269): 74-77.

【12】Simon J, Bakr W, Ma R C, et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice [J]. Nature. 2011, 472(7343): 307-312.

【13】Meng W D, Zhang H F, Deng H R, et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection [J]. Acta Physica Sinica. 2020, 69(1): 019502.
孟文东, 张海峰, 邓华荣, 等. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验 [J]. 物理学报. 2020, 69(1): 019502.

【14】Yin W B, Ma W G, Wang L R, et al. Research on the distributed optical remote sensing of methane employing single laser source [J]. Chinese Optics letters. 2004, 2(2): 86-88.

【15】Shi S P, Wang Y J, Yang W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption [J]. Optics Letters. 2018, 43(21): 5411-5414.Shi S P, Wang Y J, Yang W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption [J]. Optics Letters. 2018, 43(21): 5411-5414.

【16】Wan Z J, Feng J X, Li Y J, et al. Comparison of phase quadrature squeezed states generated from degenerate optical parametric amplifiers using PPKTP and PPLN [J]. Optics Express. 2018, 26(5): 5531-5540.

【17】Burks S, Ortalo J, Chiummo A, et al. Vacuum squeezed light for atomic memories at the D2 cesium line [J]. Optics Express. 2009, 17(5): 3777-3781.

【18】Takei N, Lee N, Moriyama D, et al. Time-gated Einstein-Podolsky-Rosen correlation [J]. Physical Review A. 2006, 74(6): 060101.

【19】Eberle T, H?ndchen V, Schnabel R. Stable control of 10 dB two-mode squeezed vacuum states of light [J]. Optics Express. 2013, 21(9): 11546-11553.

【20】Pan J W, Bouwmeester D, Daniell M, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement [J]. Nature. 2000, 403(6769): 515-519.Pan J W, Bouwmeester D, Daniell M, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement [J]. Nature. 2000, 403(6769): 515-519.

【21】Bao X H, Qian Y, Yang J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories [J]. Physical Review Letters. 2008, 101(19): 190501.

【22】Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency [J]. Physical Review Letters. 2016, 117(11): 110801.

【23】Yang W H, Shi S P, Wang Y J, et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations [J]. Optics Letters. 2017, 42(21): 4553-4556.

【24】Arnbak J, Jacobsen C S, Andrade R B, et al. Compact, low-threshold squeezed light source [J]. Optics Express. 2019, 27(26): 37877-37885.Arnbak J, Jacobsen C S, Andrade R B, et al. Compact, low-threshold squeezed light source [J]. Optics Express. 2019, 27(26): 37877-37885.

【25】Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode [J]. Optics Letters. 2010, 35(22): 3742-3744.

【26】Chen H Z, Liu X, Wang X Q, et al. 30 W, sub-kHz frequency-locked laser at 532 nm [J]. Optics Express. 2018, 26(26): 33756-33763.

【27】Xu X F, Lu Y H, Zhang L, et al. Technical study of 8.7 W continuous wave single frequency green laser based on extra-cavity frequency doubling [J]. Chinese Journal of Lasers. 2016, 43(11): 1101010.
许夏飞, 鲁燕华, 张雷, 等. 外腔谐振倍频8.7 W连续单频绿光技术研究 [J]. 中国激光. 2016, 43(11): 1101010.

【28】Boyd G D, Kleinman D. Parametric interaction of focused Gaussian light beams [J]. Journal of Applied Physics. 1968, 39(8): 3597-3639.

【29】Zhang W H, Yang W H, Shi S P, et al. Mode matching in preparation of squeezed field with high compressibility [J]. Chinese Journal of Lasers. 2017, 44(11): 1112001.
张文慧, 杨文海, 史少平, 等. 高压缩度压缩态光场制备中的模式匹配 [J]. 中国激光. 2017, 44(11): 1112001.

【30】Li Z X, Tian Y H, Wang Y J, et al. Residual amplitude modulation and its mitigation in wedged electro-optic modulator [J]. Optics Express. 2019, 27(5): 7064-7071.

【31】Zhang H Y, Wang J R, Li Q H, et al. Experimental realization of high quality factor resonance detector [J]. Journal of Quantum Optics. 2019, 25(4): 456-462.
张宏宇, 王锦荣, 李庆回, 等. 高品质因子共振型光电探测器的实验研制 [J]. 量子光学学报. 2019, 25(4): 456-462.

【32】Shi S P, Yang W H, Zheng Y H, et al. Noise analysis of single-frequency laser source in preparation of squeezed-state light field [J]. Chinese Journal of Lasers. 2019, 46(7): 0701009.
史少平, 杨文海, 郑耀辉, 等. 压缩态光场制备中的单频激光源噪声分析 [J]. 中国激光. 2019, 46(7): 0701009.

【33】Kerdoncuff H, Christensen J B, Brasil T B, et al. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency [J]. Optics Express. 2020, 28(3): 3975-3984.

引用该论文

Tian Yuhang,Wang Junping,Yang Wenhai,Tian Long,Wang Yajun,Zheng Yaohui. Frequency Doubling System for Integrated Quantum Squeezed Light Source Based on MgO∶LiNbO3 Crystal[J]. Chinese Journal of Lasers, 2020, 47(11): 1108001

田宇航,王俊萍,杨文海,田龙,王雅君,郑耀辉. 集成量子压缩光源中MgO∶LiNbO3晶体倍频系统研究[J]. 中国激光, 2020, 47(11): 1108001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF