首页 > 论文 > 激光与光电子学进展 > 56卷 > 15期(pp:150602--1)

基于斐索干涉的超弱光纤光栅水听器阵列实验研究

Experimental Study on Ultra-Weak Fiber Bragg Grating Hydrophone Arrays Based on Fizeau Interference

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了一种基于斐索干涉的超弱光纤光栅(uwFBG)水听器阵列系统。通过拉丝塔在线制备光纤光栅技术构建超弱光纤光栅水听器阵列,使用反正切算法解调信号,实现了2~2000 Hz宽频带内水声信号的振幅、频率和相位的同时测量。在频率为2 Hz时,系统水声信号的相位声压灵敏度可达-135.81 dB(re rad/μPa),灵敏度为2755.49(μPa/ Hz),信噪比为43.785 dB。传感器复用实验结果证实该系统可以同时解调不同位置的水声信息,系统的相位声压灵敏度随着传感器腔长的增加而增加,且具有很好的稳定性,表明系统在高灵敏度水声传感、甚低频声学探测、深海监测等方面具有广阔的应用前景。

Abstract

Herein, an ultra-weak fiber Bragg grating hydrophone array system based on Fizeau interference is demonstrated. The ultra-weak fiber Bragg grating hydrophone array is constructed via on-line preparation of a fiber Bragg grating using a drawing tower. The amplitude, frequency, and phase of underwater acoustic signals in a wide frequency range of 2-2000 Hz are simultaneously measured using the signal demodulated by the arc-tangent algorithm. The phase acoustic-pressure sensitivity of the system hydroacoustic signals at 2 Hz reaches -135.81 dB(re rad/μPa). The sensitivity is 2755.49 μPa/ Hz, and the signal-to-noise ratio is 43.785 dB. The experimental results of sensor multiplexing prove that the system can demodulate underwater acoustic information at different locations. Furthermore, the phase acoustic-pressure sensitivity of the system increases with the increasing cavity length of the sensor. The system exhibits very good stability, indicating the possibility of extensive applications in high-sensitivity underwater acoustic sensing, very low frequency acoustic detection, deep-sea monitoring, and other fields.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.150602

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61775173,61505152)、预研基金(6140243010116QT69001);

收稿日期:2019-01-24

修改稿日期:2019-03-05

网络出版日期:2019-08-01

作者单位    点击查看

徐倩楠:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学信息工程学院, 湖北 武汉 430070
周次明:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
范典:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
庞彦东:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学信息工程学院, 湖北 武汉 430070
赵晨光:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学机电学院, 湖北 武汉 430070
陈希:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学信息工程学院, 湖北 武汉 430070
黄俊斌:海军工程大学兵器工程系, 湖北 武汉 430033
顾宏灿:海军工程大学兵器工程系, 湖北 武汉 430033

联系人作者:周次明(zcm@whut.edu.cn)

备注:国家自然科学基金(61775173,61505152)、预研基金(6140243010116QT69001);

【1】Tietjen B W. Bias compensated optical grating hydrophone. The Journal of the Acoustical Society of America. 77(2), (1985).

【2】Huang S Y, Jin X F, Zhang J et al. An optical fiber hydrophone using equivalent phase shift fiber Bragg grating for underwater acoustic measurement. Photonic Sensors. 1(3), 289-294(2011).

【3】Yang J, Zhao Y and Ni X J. Development of novel fiber Bragg grating underwater acoustic sensor. Acta Optica Sinica. 27(9), 1575-1579(2007).
杨剑, 赵勇, 倪行洁. 新型光纤光栅水声传感器的研究. 光学学报. 27(9), 1575-1579(2007).

【4】Tang B, Huang J B and Gu H C. Low acceleration sensitivity DFB fiber laser hydrophone. Chinese Journal of Lasers. 45(3), (2018).
唐波, 黄俊斌, 顾宏灿. 低加速度灵敏度的分布反馈式光纤激光水听器研究. 中国激光. 45(3), (2018).

【5】Takahashi N, Yoshimura K, Takahashi S et al. Development of an optical fiber hydrophone with fiber Bragg grating. Ultrasonics. 38, 581-585(2000).

【6】Lin H Z. Study on key technologies of the fiber Bragg gratting hydrophone array based on path-match interferometry. Changsha: National University of Defense Technology. 10-15(2013).
林惠祖. 基于匹配干涉的光纤光栅水听器阵列关键技术研究. 长沙: 国防科学技术大学. 10-15(2013).

【7】Zhang W T, Liu Y L and Li F. Fiber Bragg grating hydrophone with high sensitivity. Chinese Optics Letters. 6(9), 631-633(2008).

【8】Tang B, Huang J B, Gu H C et al. Frequency response characteristics of sound pressure sensitivity of distributed feedback fiber laser hydrophone. Acta Optica Sinica. 37(4), (2017).
唐波, 黄俊斌, 顾宏灿 等. 分布反馈式光纤激光水听器的声压灵敏度频率响应特性. 光学学报. 37(4), (2017).

【9】Foster S. Tikhomirov A, van Velzen J. Towards a high performance fiber laser hydrophone. Journal of Lightwave Technology. 29(9), 1335-1342(2011).

【10】Zhang W T and Li F. Recent progresses in fiber laser hydrophone. Journal of Integration Technology. 4(6), 1-14(2015).
张文涛, 李芳. 光纤激光水听器研究进展. 集成技术. 4(6), 1-14(2015).

【11】Zhou C M, Pang Y D and Fan D. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal. Journal of Lightwave Technology. 1-10(2018).

【12】Foster S, Tikhomirov A, Englund M et al. A 16 channel fibre laser sensor array. [C]//ACOFT/AOS 2006 - Australian Conference on Optical Fibre Technology/Australian Optical Society, July 10-13, 2006, Melbourne, VIC, Australia. New York: IEEE. 40-42(2006).

【13】Li Y, Qian L, Zhou C M et al. Multiple-octave-spanning vibration sensing based on simultaneous vector demodulation of 499 Fizeau interference signals from identical ultra-weak fiber Bragg gratings over 2.5 km. Sensors. 18(2), (2018).

【14】Tosi D. Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications. Sensors. 18(7), (2018).

【15】Campopiano S, Cutolo A, Cusano A et al. Underwater acoustic sensors based on fiber Bragg gratings. Sensors. 9(6), 4446-4454(2009).

【16】Guo H Y, Qian L, Zhou C M et al. Crosstalk and ghost gratings in a large-scale weak fiber Bragg grating array. Journal of Lightwave Technology. 35(10), 2032-2036(2017).

【17】Liu S, Han X Y, Xiong Y C et al. Distributed vibration detection system based on weak fiber Bragg grating array. Chinese Journal of Lasers. 44(2), (2017).
刘胜, 韩新颖, 熊玉川 等. 基于弱光纤光栅阵列的分布式振动探测系统. 中国激光. 44(2), (2017).

【18】Hill D J and Cranch G A. Gain in hydrostatic pressure sensitivity of coated fibre Bragg grating. Electronics Letters. 35(15), 1268-1269(1999).

【19】Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. Optical Fiber Technology. 34, 47-51(2017).

【20】Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays. Chinese Optics Letters. 11(3), (2013).

【21】Mao X, Huang J B and Gu H C. Effect of relaxation oscillation on digital demodulation of 3×3 couplers. Chinese Journal of Lasers. 44(10), (2017).
毛欣, 黄俊斌, 顾宏灿. 弛豫振荡对3×3耦合器数字解调的影响. 中国激光. 44(10), (2017).

【22】Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings. Optics Express. 23(22), 29038-29046(2015).

【23】Gordienko V A, Gordienko E L, Dryndin A V et al. Absolute pressure calibration of acoustic receivers in a vibrating column of liquid. Acoustical Physics. 40(2), 219-222(1994).

【24】Takahashi S, Kikuchi T and Ohkura K. Measurements of acoustic sensitivity of fibers used for optical fiber hydrophones. Acta Acustica United With Acustica. 60(1), 75-77(1986).

【25】Wang Y M, Gong J M, Dong B et al. A large serial time-division multiplexed fiber Bragg grating sensor network. Journal of Lightwave Technology. 30(17), 2751-2756(2012).

引用该论文

Xu Qiannan,Zhou Ciming,Fan Dian,Pang Yandong,Zhao Chenguang,Chen Xi,Huang Junbin,Gu Hongcan. Experimental Study on Ultra-Weak Fiber Bragg Grating Hydrophone Arrays Based on Fizeau Interference[J]. Laser & Optoelectronics Progress, 2019, 56(15): 150602

徐倩楠,周次明,范典,庞彦东,赵晨光,陈希,黄俊斌,顾宏灿. 基于斐索干涉的超弱光纤光栅水听器阵列实验研究[J]. 激光与光电子学进展, 2019, 56(15): 150602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF