首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002006--1)

材料状态对GH4169高温合金激光焊接头组织与性能的影响

Effect of Material States on Microstructure and Properties of GH4169 Superalloy Laser-Welded Joint

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

对传统轧制态(R)GH4169板材和SLM增材制造(3D)GH4169板材分别进行激光焊接,采用光学显微镜、扫描电镜、能谱仪对接头显微组织特征进行表征,并对接头进行显微硬度和拉伸测试。试验结果表明熔合区显微组织主要由胞晶向枝晶或柱状晶转变,晶内和晶间区域存在大量δ相和laves相。R/3D GH4169接头、R/R GH4169接头和3D/3D GH4169接头的晶粒尺寸和析出相尺寸依次减小,熔合区平均显微硬度依次增加(250 HV,261 HV,274 HV),接头拉伸强度依次增加(768 MPa,799 MPa,985 MPa)。R/3D GH4169接头和R/R GH4169接头断裂以韧性断裂为主,而3D/3D GH4169接头主要为脆性断裂。

Abstract

A conventional rolled (R) GH4169 sheet and a selective laser melting (SLM) additive-manufactured (3D) GH4169 sheet were welded to comparatively investigate the microstructure and mechanical properties of the three (R/3D, R/R, and 3D/3D) welded joints. Optical microscopy, scanning electron microscopy, and energy-dispersive spectrometry were used to characterize the microstructure of the butt joints; microhardness and tensile tests were also performed on the butt joints. The test results show that the microstructure of the fusion zone is mainly transformed from cell crystals to dendrites or columnar crystals and a large number of δ phases and laves phases are formed in the intergranular and intragranular regions. The grain size and precipitated phase size of the R/3D GH4169 joint, R/R GH4169 joint, and 3D/3D GH4169 joint decrease in sequence, the average microhardness of the fusion zone increases successively (250 HV, 261 HV, and 274 HV, respectively), and the tensile strength of the joints increases successively (768 MPa, 799 MPa, and 985 MPa, respectively). The fracture mode of the R/3D GH4169 and R/R GH4169 joints is mainly ductile fracture, whereas the fracture mode of the 3D/3D GH4169 joint is brittle fracture.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG456.7; TG146.1

DOI:10.3788/CJL202047.1002006

所属栏目:激光制造

基金项目:航空科学基金、江西省自然科学基金;

收稿日期:2020-03-16

修改稿日期:2020-06-03

网络出版日期:2020-10-01

作者单位    点击查看

孙文君:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
王善林:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
谭观华:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
陈玉华:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
信纪军:中国科学院等离子体物理研究所, 安徽 合肥 230031
洪敏:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036
柯黎明:南昌航空大学航空构件成形与连接江西省重点实验室, 江西 南昌 330036

联系人作者:王善林(slwang70518@nchu.edu.cn); 信纪军(slwang70518@nchu.edu.cn);

备注:航空科学基金、江西省自然科学基金;

【1】Lei L M, Hou H P, He Y L, et al. Application and challenges of metal additive manufacturing in civil aviation [J]. Aeronautical Manufacturing Technology. 2019, 62(21): 22-30.
雷力明, 侯慧鹏, 何艳丽, 等. 金属增材制造技术在民用航空领域的应用与挑战 [J]. 航空制造技术. 2019, 62(21): 22-30.
Lei L M, Hou H P, He Y L, et al. Application and challenges of metal additive manufacturing in civil aviation [J]. Aeronautical Manufacturing Technology. 2019, 62(21): 22-30.
雷力明, 侯慧鹏, 何艳丽, 等. 金属增材制造技术在民用航空领域的应用与挑战 [J]. 航空制造技术. 2019, 62(21): 22-30.

【2】Huang S, Guo S Q, Zhang G H, et al. Microstructure and impact toughness of GH4169 samples fabricated by selective laser melting [J]. Laser & Optoelectronics Progress. 2020, 57(5): 051405.
黄帅, 郭绍庆, 张国会, 等. 选区激光熔化GH4169组织与冲击韧性分析 [J]. 激光与光电子学进展. 2020, 57(5): 051405.

【3】Liu F C, Lü F Y, Ren H, et al. δ phase precipitation of Inconel 718 Ni-based superalloy fabricated by laser solid forming [J]. Chinese Journal of Lasers. 2018, 45(12): 1202009.
刘奋成, 吕飞阅, 任航, 等. 激光立体成形Inconel 718镍基高温合金δ相析出规律 [J]. 中国激光. 2018, 45(12): 1202009.

【4】Zhao X B, Gu Y F, Lu J T, et al. New research development of superalloy GH4169 [J]. Rare Metal Materials and Engineering. 2015, 44(3): 768-774.
赵新宝, 谷月峰, 鲁金涛, 等. GH4169合金的研究新进展 [J]. 稀有金属材料与工程. 2015, 44(3): 768-774.

【5】Zhang J, Zhang Q L, Li D, et al. Effect of δ aging treatment on microstructure and tensile properties of repaired Inconel 718 alloy using laser additive manufacturing [J]. Chinese Journal of Lasers. 2020, 47(1): 0102001.
张杰, 张群莉, 李栋, 等. δ时效处理对激光增材修复Inconel 718合金组织与性能的影响 [J]. 中国激光. 2020, 47(1): 0102001.

【6】Chen G Q, Zhang B G, Lü T M, et al. Causes and control of welding cracks in electron-beam-welded superalloy GH4169 joints [J]. Transactions of Nonferrous Metals Society of China. 2013, 23(7): 1971-1976.

【7】Kobayashi K, Yamaguchi K, Hayakawa M, et al. Grain size effect on high-temperature fatigue properties of alloy718 [J]. Materials Letters. 2005, 59(2/3): 383-386.

【8】Ping D H, Gu Y F, Cui C Y, et al. Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy [J]. Materials Science and Engineering A. 2007, 456(1/2): 99-102.

【9】Yeni C, Ko?ak M. Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure [J]. International Journal of Pressure Vessels and Piping. 2008, 85(8): 532-539.

【10】Hong J K, Park J H, Park N K, et al. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding [J]. Journal of Materials Processing Technology. 2008, 201(1/2/3): 515-520.

【11】Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds [J]. Journal of Materials Processing Technology. 2005, 167(1): 73-82.

【12】Zhu Q, Cheng L K, Wang C J, et al. Effect of δ phase on size effect in microtensile deformation of a nickel-based superalloy [J]. Materials Science and Engineering A. 2019, 766: 138405.

【13】Li Z, Chen J, Sui S, et al. The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition [J]. Additive Manufacturing. 2020, 31: 100941.

【14】Li Y B, Meng D Q, Liu K Z, et al. Simulation of microstructure formation during solidification in weld pool [J]. Transactions of the China Welding Institution. 2010, 31(4): 57-60, 64.
李玉斌, 蒙大桥, 刘柯钊, 等. 焊接熔池凝固过程组织演变模拟 [J]. 焊接学报. 2010, 31(4): 57-60, 64.

【15】Haines M, Plotkowski A, Frederick C L, et al. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing [J]. Computational Materials Science. 2018, 155: 340-349.

【16】Niu S Q, Yin K X, You Q F, et al. The alloying elements dispersion and its mechanisms in a Ni-based superalloy during electron beam remelting [J]. Vacuum. 2019, 166: 107-113.

【17】Han K, Wang H Q, Peng F, et al. Investigation of microstructure and mechanical performance in IN738LC joint by vacuum electron beam welding [J]. Vacuum. 2019, 162: 214-227.

【18】Eri? R, Akdeniz M V, Mekhrabov A O. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ''''-Ni3Al precipitates in Ni-based superalloys [J]. Intermetallics. 2019, 109: 37-47.

【19】Im S Y, Jun S Y, Lee J W, et al. Unidirectional columnar microstructure and its effect on the enhanced creep resistance of selective electron beam melted Inconel 718 [J]. Journal of Alloys and Compounds. 2020, 817: 153320.

【20】Stinville J C, Yao E R, Callahan P G, et al. Dislocation dynamics in a nickel-based superalloy via in situ transmission scanning electron microscopy [J]. Acta Materialia. 2019, 168: 152-166.

【21】Li Z, Sui S, Yuan Z H, et al. Microstructure and tensile properties of high-deposition-rate laser metal deposited GH4169 alloy [J]. Chinese Journal of Lasers. 2019, 46(1): 0102004.
李祚, 隋尚, 袁子豪, 等. 高沉积率激光熔覆沉积GH4169合金的微观组织与拉伸性能 [J]. 中国激光. 2019, 46(1): 0102004.

引用该论文

Sun Wenjun,Wang Shanlin,Tan Guanhua,Chen Yuhua,Xin Jijun,Hong Min,Ke Liming. Effect of Material States on Microstructure and Properties of GH4169 Superalloy Laser-Welded Joint[J]. Chinese Journal of Lasers, 2020, 47(10): 1002006

孙文君,王善林,谭观华,陈玉华,信纪军,洪敏,柯黎明. 材料状态对GH4169高温合金激光焊接头组织与性能的影响[J]. 中国激光, 2020, 47(10): 1002006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF