首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1642-1647)

Fast and wide-band tuning single-mode microlaser based on fiber Fabry–Pérot microcavities

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A narrow-linewidth laser operating at the telecommunications band combined with both fast and wide-band tuning features will have promising applications. Here we demonstrate a single-mode (both transverse and longitudinal mode) continuous microlaser around 1535 nm based on a fiber Fabry–Pérot microcavity, which achieves wide-band tuning without mode hopping to the 1.3 THz range and fast tuning rate to 60 kHz and yields a frequency scan rate of 1.6×1017 Hz/s. Moreover, the linewidth of the laser is measured as narrow as 3.1 MHz. As the microlaser combines all these features into one fiber component, it can serve as the seed laser for versatile applications in optical communication, sensing, frequency-modulated continuous-wave radar, and high-resolution imaging.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.400710

所属栏目:Lasers and Laser Optics

基金项目:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Key Research Program of Frontier Sciences; Science Foundation of the CAS; Fundamental Research Funds for the Central Universities10.13039/501100012226; Anhui Initiative in Quantum Information Technologies;

收稿日期:2020-06-22

录用日期:2020-08-11

网络出版日期:2020-08-14

作者单位    点击查看

Xin-Xia Gao:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Jin-Ming Cui:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;e-mail: jmcui@ustc.edu.cn
Zhi-Hao Hu:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Chun-Hua Dong:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Jian Wang:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Yun-Feng Huang:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Chuan-Feng Li:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;e-mail: cfli@ustc.edu.cn
Guang-Can Guo:CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

联系人作者:Jin-Ming Cui(jmcui@ustc.edu.cn); Chuan-Feng Li(cfli@ustc.edu.cn);

备注:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Key Research Program of Frontier Sciences; Science Foundation of the CAS; Fundamental Research Funds for the Central Universities10.13039/501100012226; Anhui Initiative in Quantum Information Technologies;

【1】Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. Kelleher, J. C. Travers, V. Nicolosi and A. C. Ferrari. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 3, 653-660(2010).

【2】S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vu?kovi?, A. Majumdar and X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature. 520, 69-72(2015).

【3】S. Smith, F. Zarinetchi and S. Ezekiel. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393-395(1991).

【4】M. C. Huang, Y. Zhou and C. J. Chang-Hasnain. A nanoelectromechanical tunable laser. Nat. Photonics. 2, 180-184(2008).

【5】L. He, ?. K. ?zdemir and L. Yang. Whispering gallery microcavity lasers. Laser Photon. Rev. 7, 60-82(2013).

【6】S. Spillane, T. Kippenberg and K. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature. 415, 621-623(2002).

【7】S. Zhu, L. Shi, B. Xiao, X. Zhang and X. Fan. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photon. 5, 3794-3800(2018).

【8】Y. Yang, F. Lei, S. Kasumie, L. Xu, J. M. Ward, L. Yang and S. N. Chormaic. Tunable erbium-doped microbubble laser fabricated by sol-gel coating. Opt. Express. 25, 1308-1313(2017).

【9】L. Yang and K. Vahala. Gain functionalization of silica microresonators. Opt. Lett. 28, 592-594(2003).

【10】E. P. Ostby, L. Yang and K. J. Vahala. Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process. Opt. Lett. 32, 2650-2652(2007).

【11】J. M. Ward, Y. Yang and S. N. Chormaic. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci. Rep. 6, (2016).

【12】Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu and X. Zhang. All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator. Lab Chip. 14, 3004-3010(2014).

【13】D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. H?nsch and J. Reichel. A fiber Fabry-Perot cavity with high finesse. New J. Phys. 12, (2010).

【14】E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey and L. Childress. Fabry-Perot microcavity for diamond-based photonics. Phys. Rev. A. 92, (2015).

【15】M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel and M. K?hl. Single ion coupled to an optical fiber cavity. Phys. Rev. Lett. 110, (2013).

【16】K. Zhou, J.-M. Cui, Y.-F. Huang, Z. Wang, Z.-H. Qian, Q.-M. Wu, J. Wang, R. He, W.-M. Lv, C.-K. Hu and Y. J. Han. An ultraviolet fiber Fabry-Pérot cavity for florescence collection of trapped ions. Chin. Phys. Lett. 34, (2017).

【17】F. Haas, J. Volz, R. Gehr, J. Reichel and J. Estève. Entangled states of more than 40 atoms in an optical fiber cavity. Science. 344, 180-183(2014).

【18】K. N. Dinyari, R. J. Barbour, D. A. Golter and H. Wang. Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures. Opt. Express. 19, 17966-17972(2011).

【19】E. Janitz, M. Ruf, Y. Fontana, J. Sankey and L. Childress. High mechanical bandwidth fiber-coupled Fabry-Perot cavity. Opt. Express. 25, 20932-20943(2017).

【20】K. Numata, J. R. Chen and S. T. Wu. Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser. Opt. Express. 20, 14234-14243(2012).

【21】P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber and W. R. Babbitt. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett. 34, 3692-3694(2009).

【22】X. Zhang, J. Pouls and M. C. Wu. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW lidar. Opt. Express. 27, 9965-9974(2019).

【23】W. S. BurdicW. S. Burdic. Radar Signal Analysis. : Prentice-Hall, (1968).

【24】J. ZhengJ. Zheng. Analysis of optical frequency-modulated continuous-wave interference. Appl. Opt. 43, 4189-4198(2004).

【25】J. O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burgner and A. Yariv. 1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression. Appl. Opt. 56, B116-B122(2017).

【26】J. White, A. Vasilyev, J. Cahill, N. Satyan, O. Okusaga, G. Rakuljic, C. Mungan and A. Yariv. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser. Opt. Express. 20, 15872-15881(2012).

【27】M. Y. Jeon, N. Kim, S.-P. Han, H. Ko, H.-C. Ryu, D.-S. Yee and K. H. Park. Rapidly frequency-swept optical beat source for continuous wave terahertz generation. Opt. Express. 19, 18364-18371(2011).

【28】D. MittlemanD. Mittleman. Terahertz imaging. Sensing with Terahertz Radiation. : Springer, 117-153(2003).

【29】N. Satyan, G. Rakuljic and A. Yariv. Chirp multiplication by four wave mixing for wideband swept-frequency sources for high resolution imaging. J. Lightwave Technol. 28, 2077-2083(2010).

【30】N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva and A. Yariv. Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express. 17, 15991-15999(2009).

【31】M. Phelps, M. M. Reid, R. Douglas, A.-M. van Veggel, V. Mangano, K. Haughian, A. Jongschaap, M. Kelly, J. Hough and S. Rowan. Strength of hydroxide catalysis bonds between sapphire, silicon, and fused silica as a function of time. Phys. Rev. D. 98, (2018).

【32】J. M. Simon and S. A. Comastri. Fringe localization depth. Appl. Opt. 26, 5125-5129(1987).

引用该论文

Xin-Xia Gao, Jin-Ming Cui, Zhi-Hao Hu, Chun-Hua Dong, Jian Wang, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo, "Fast and wide-band tuning single-mode microlaser based on fiber Fabry–Pérot microcavities," Photonics Research 8(10), 1642-1647 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF