首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1106006--1)

基于光纤光栅传感器的板状结构形态感知与三维重构技术

Shape Perception and Three-Dimensional Reconstruction Technology of Plate Structure Based on Fiber Bragg Grating Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以航天器中结构的形态感知与可视化重构为研究背景,提出了一种基于准分布光纤光栅传感器网络的板状结构变形监测系统和坐标转换曲面重构算法。首先利用ABAQUS有限元分析软件对四边固支平板结构中心点加载的变形状态进行仿真分析,确定了光纤光栅传感器的位置;研究并分析了光纤光栅的应变检测原理以及基于坐标变换的三维曲面重构算法;最终搭建了一套变形检测系统并进行了相关实验。结果表明,测量点变形量的均方根误差≤0.04 mm,相对误差≤3.5%,该系统可用于航天器板状结构的变形监测。

Abstract

Taking the shape perception and visualization reconstruction of the structure in the spacecraft as the research background, a plate-shaped structure deformation monitoring system based on a quasi-distributed fiber Bragg grating sensor network and a coordinate conversion surface reconstruction algorithm are proposed. First, the finite element analysis software ABAQUS is used to simulate and analyze the deformation state of the four-side fixed plate structure, and the position of the fiber grating sensor is determined. Then, the strain detection principle of the fiber Bragg grating and the three-dimensional surface reconstruction algorithm based on coordinate transformation are studied and analyzed. Finally, a set of deformation detection systems is built, and relevant experiments are carried out. The results show that the root mean square error of the shape variable of the measured point is no more than 0.04 mm, and the relative error is no more than 3.5%. The system can be applied to the deformation detection of the plate structure in the spacecraft.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP212

DOI:10.3788/CJL202047.1106006

所属栏目:光纤光学与光通信

基金项目:国家重点研发计划、国家自然科学基金、山东省重点研发项目;

收稿日期:2020-04-17

修改稿日期:2020-07-13

网络出版日期:2020-11-01

作者单位    点击查看

闫洁:山东大学控制科学与工程学院, 山东 济南 250061
李伟:山东大学控制科学与工程学院, 山东 济南 250061
姜明顺:山东大学控制科学与工程学院, 山东 济南 250061
张雷:山东大学控制科学与工程学院, 山东 济南 250061
张法业:山东大学控制科学与工程学院, 山东 济南 250061
隋青美:山东大学控制科学与工程学院, 山东 济南 250061

联系人作者:姜明顺(jiangmingshun@sdu.edu.cn)

备注:国家重点研发计划、国家自然科学基金、山东省重点研发项目;

【1】Kim D H, Lee K H, Ahn B J, et al. Strain and damage monitoring in solar-powered aircraft composite wing using fiber Bragg grating sensors [J]. Proceedings of SPIE. 2013, 8692: 869222.Kim D H, Lee K H, Ahn B J, et al. Strain and damage monitoring in solar-powered aircraft composite wing using fiber Bragg grating sensors [J]. Proceedings of SPIE. 2013, 8692: 869222.

【2】Zhang X H, Zhu Y K, Zhang X Y, et al. C]∥2017 proceedings of Far East nondestructive testing new technology forum, [S.l.]: [s.n.]. 2017.
张新华, 朱永凯, 张许雅, 等. [出版地不详]: [出版者不详]: , 2017.

【3】Zhang H S. Morphological perception and reconstruction of flexible structures based on orthogonal discrete FBG networks [D]. Shanghai: Shanghai University. 2015.
张合生. 基于正交离散FBG网络的柔板结构形态感知与重构 [D]. 上海: 上海大学. 2015.

【4】Nicolas M, Sullivan R, Richards W. Large scale applications using FBG sensors: determination of in-flight loads and shape of a composite aircraft wing [J]. Aerospace. 2016, 3(3): 18-32.

【5】Bang H J, Shin H K, Ju Y C. Structural health monitoring of a composite wind turbine blade using fiber Bragg grating sensors [J]. Proceedings of SPIE. 2010, 7647: 76474H.

【6】Li D T. Research on distributed optical fiber deformation monitoring technology of flexible structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2017.
李丹婷. 柔性结构分布式光纤变形监测技术研究 [D]. 南京: 南京航空航天大学. 2017.

【7】Zhang Y Y. Research on deformation monitoring based on FBG sensor network [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2015.
张钰钰. 基于光纤光栅传感网络的变形监测研究 [D]. 南京: 南京航空航天大学. 2015.

【8】Qu D M, Sun G K, Li H, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape [J]. Chinese Journal of Scientific Instrument. 2018, 39(1): 144-151.
曲道明, 孙广开, 李红, 等. 变形机翼柔性蒙皮形状光纤传感及重构方法 [J]. 仪器仪表学报. 2018, 39(1): 144-151.

【9】Sun S H, Yu Y L, Li H, et al. Detection technique of stress waves based on fiber Bragg grating [J]. Chinese Journal of Lasers. 2016, 43(5): 0505002.
孙诗惠, 余有龙, 李慧, 等. 基于光纤光栅的应力波检测技术研究 [J]. 中国激光. 2016, 43(5): 0505002.

【10】Chen G, Ding K Q, Feng Q B, et al. Strain transfer mechanism of end-bonding fibre Bragg grating sensors based on linear viscoelasticity [J]. Laser & Optoelectronics Progress. 2018, 55(11): 110604.
陈光, 丁克勤, 冯其波, 等. 线黏弹性端接布拉格光纤光栅传感器应变传递机理 [J]. 激光与光电子学进展. 2018, 55(11): 110604.

【11】Quan Z Q, Fang X Q, Xue G Z, et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor [J]. Chinese Journal of Lasers. 2020, 47(1): 0104004.
权志桥, 方新秋, 薛广哲, 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究 [J]. 中国激光. 2020, 47(1): 0104004.

【12】Rapp S, Kang L, Han J, et al. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors [J]. Smart Materials and Structures. 2009, 18(2): 025006.

【13】Panopoulou A, Loutas T, Roulias D, et al. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures [J]. Acta Astronautica. 2011, 69(7/8): 445-457.Panopoulou A, Loutas T, Roulias D, et al. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures [J]. Acta Astronautica. 2011, 69(7/8): 445-457.

【14】Kim H I, Kang L H, Han J H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures [J]. Smart Materials and Structures. 2011, 20(3): 035011.

【15】Zhu X J, Ji L X, Zhang H S, et al. Analysis of 3D curve reconstruction method using orthogonal curvatures [J]. Journal of Basic Science and Engineering. 2011, 19(2): 305-313.
朱晓锦, 季玲晓, 张合生, 等. 基于空间正交曲率信息的三维曲线重构方法分析 [J]. 应用基础与工程科学学报. 2011, 19(2): 305-313.

【16】Zhang J K, Sun G K, Li H, et al. Optical fiber shape sensing of polyimide skin for flexible morphing wing [J]. Chinese Journal of Scientific Instrument. 2018, 39(2): 66-72.
张俊康, 孙广开, 李红, 等. 变形机翼薄膜蒙皮形状监测光纤传感方法研究 [J]. 仪器仪表学报. 2018, 39(2): 66-72.

【17】Zhou L. Research on structural thermal properties and deformation monitoring method based on optical fiber sensing technology [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2018.
周林. 基于光纤传感技术的结构热属性与变形监测方法研究 [D]. 南京: 南京航空航天大学. 2018.

【18】Zhu X J, Lu M Y, Fan H C, et al. Experimental research on intelligent reconstruction based structure vibration shape perception and on fiber grating network [J]. Chinese Journal of Scientific Instrument. 2009, 30(1): 65-70.
朱晓锦, 陆美玉, 樊红朝, 等. 光纤光栅机敏结构振动形态感知与重构试验研究 [J]. 仪器仪表学报. 2009, 30(1): 65-70.

【19】He K. Research on distributed fiber shape sensing and 3D reconstruction technology of flexible structure [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2018.
何凯. 柔性结构分布式光纤形态感知与三维重构技术研究 [D]. 南京: 南京航空航天大学. 2018.

【20】Glaser R, Caccese V, Shahinpoor M. Shape monitoring of a beam structure from measured strain or curvature [J]. Experimental Mechanics. 2012, 52(6): 591-606.

引用该论文

Yan Jie,Li Wei,Jiang Mingshun,Zhang Lei,Zhang Faye,Sui Qingmei. Shape Perception and Three-Dimensional Reconstruction Technology of Plate Structure Based on Fiber Bragg Grating Sensor[J]. Chinese Journal of Lasers, 2020, 47(11): 1106006

闫洁,李伟,姜明顺,张雷,张法业,隋青美. 基于光纤光栅传感器的板状结构形态感知与三维重构技术[J]. 中国激光, 2020, 47(11): 1106006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF