首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1532-1540)

Single-photon computational 3D imaging at 45 km

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Single-photon light detection and ranging (lidar) offers single-photon sensitivity and picosecond timing resolution, which is desirable for high-precision three-dimensional (3D) imaging over long distances. Despite important progress, further extending the imaging range presents enormous challenges because only a few echo photons return and are mixed with strong noise. Here, we tackled these challenges by constructing a high-efficiency, low-noise coaxial single-photon lidar system and developing a long-range-tailored computational algorithm that provides high photon efficiency and good noise tolerance. Using this technique, we experimentally demonstrated active single-photon 3D imaging at a distance of up to 45 km in an urban environment, with a low return-signal level of 1 photon per pixel. Our system is feasible for imaging at a few hundreds of kilometers by refining the setup, and thus represents a step towards low-power and high-resolution lidar over extra-long ranges.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.390091

所属栏目:Quantum Optics

基金项目:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Shanghai Municipal Science and Technology Major Project; Anhui Initiative in Quantum Information Technologies; Shanghai Science and Technology Development Funds; Fundamental Research Funds for the Central Universities10.13039/501100012226; Youth Innovation Promotion Association of CAS;

收稿日期:2020-02-07

录用日期:2020-07-12

网络出版日期:2020-07-13

作者单位    点击查看

Zheng-Ping Li:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Xin Huang:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Yuan Cao:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Bin Wang:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Yu-Huai Li:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Weijie Jin:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Chao Yu:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Jun Zhang:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Qiang Zhang:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cheng-Zhi Peng:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Feihu Xu:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Jian-Wei Pan:Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

联系人作者:Feihu Xu(feihuxu@ustc.edu.cn)

备注:National Key Research and Development Program of China10.13039/501100012166; National Natural Science Foundation of China10.13039/501100001809; Shanghai Municipal Science and Technology Major Project; Anhui Initiative in Quantum Information Technologies; Shanghai Science and Technology Development Funds; Fundamental Research Funds for the Central Universities10.13039/501100012226; Youth Innovation Promotion Association of CAS;

【1】R. M. Marino and W. R. Davis. Jigsaw: a foliage-penetrating 3D imaging laser radar system. Lincoln Lab. J. 15, 23-36(2005).

【2】B. SchwarzB. Schwarz. Lidar: mapping the world in 3D. Nat. Photonics. 4, 429-430(2010).

【3】C. L. Glennie, W. E. Carter, R. L. Shrestha and W. E. Dietrich. Geodetic imaging with airborne lidar: the Earth’s surface revealed. Rep. Prog. Phys. 76, (2013).

【4】D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt and T. C. Duxbury. Topography of the northern hemisphere of mars from the mars orbiter laser altimeter. Science. 279, 1686-1692(1998).

【5】W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne and C. Webb. The ICESat-2 laser altimetry mission. Proc. IEEE. 98, 735-751(2010).

【6】A. B. Gschwendtner and W. E. Keicher. Development of coherent laser radar at Lincoln Laboratory. Lincoln Lab. J. 12, 383-396(2000).

【7】G. Buller and A. Wallace. Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition. IEEE J. Sel. Top. Quantum Electron. 13, 1006-1015(2007).

【8】R. H. HadfieldR. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics. 3, 696-705(2009).

【9】J. A. Richardson, L. A. Grant and R. K. Henderson. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photon. Technol. Lett. 21, 1020-1022(2009).

【10】F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers and W. Brockherde. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J. Sel. Top. Quantum Electron. 20, 364-373(2014).

【11】A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace and G. S. Buller. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Appl. Opt. 48, 6241-6251(2009).

【12】A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield and G. S. Buller. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection. Opt. Express. 21, 8904-8915(2013).

【13】Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng and G. Wu. Multi-beam single-photon-counting three-dimensional imaging lidar. Opt. Express. 25, 10189-10195(2017).

【14】S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller and J. Leach. Long-range depth imaging using a single-photon detector array and non-local data fusion. Sci. Rep. 9, (2019).

【15】W. Wagner, A. Ullrich, V. Ducic, T. Melzer and N. Studnicka. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. Photogramm. Remote Sens. 60, 100-112(2006).

【16】A. Kirmani, D. Venkatraman, D. Shin, A. Cola?o, F. N. Wong, J. H. Shapiro and V. K. Goyal. First-photon imaging. Science. 343, 58-61(2014).

【17】Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero and D. Faccio. Quantum-inspired computational imaging. Science. 361, (2018).

【18】D. Shin, A. Kirmani, V. K. Goyal and J. H. Shapiro. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors. IEEE Trans. Comput. Imaging. 1, 112-125(2015).

【19】Y. Altmann, X. Ren, A. McCarthy, G. S. Buller and S. McLaughlin. Lidar waveform-based analysis of depth images constructed using sparse single-photon data. IEEE Trans. Image Process. 25, 1935-1946(2016).

【20】D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong and J. H. Shapiro. Photon-efficient imaging with a single-photon camera. Nat. Commun. 7, (2016).

【21】J. Rapp and V. K. Goyal. A few photons among many: unmixing signal and noise for photon-efficient active imaging. IEEE Trans. Comput. Imaging. 3, 445-459(2017).

【22】D. B. Lindell, M. O’Toole and G. Wetzstein. Single-photon 3D imaging with deep sensor fusion. ACM Trans. Graph. 37, (2018).

【23】A. M. Pawlikowska, A. Halimi, R. A. Lamb and G. S. Buller. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express. 25, 11919-11931(2017).

【24】Z.-P. Li, X. Huang, P.-Y. Peng, Y. Hong, C. Yu, Y. Cao, J. Zhang, F. Xu and J.-W. Pan. Super-resolution single-photon imaging at 8.2 kilometers. Opt. Express. 28, 4076-4087(2020).

【25】M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson and M. J. Padgett. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Opt. Express. 24, 10476-10485(2016).

【26】C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou and J. W. Pan. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. Opt. Express. 25, 14611-14620(2017).

【27】M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard and J. J. Zayhowski. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Lab. J. 13, 351-370(2002).

【28】S. Hernandez-Marin, A. M. Wallace and G. J. Gibson. Bayesian analysis of lidar signals with multiple returns. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170-2180(2007).

【29】D. Shin, J. H. Shapiro and V. K. Goyal. Photon-efficient super-resolution laser radar. Proc. SPIE. 10394, (2017).

【30】J. Tachella, Y. Altmann, S. McLaughlin and J.-Y. Tourneret. 3D reconstruction using single-photon lidar data exploiting the widths of the returns. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 7815-7819(2019).

【31】D. Shin, F. Xu, F. N. Wong, J. H. Shapiro and V. K. Goyal. Computational multi-depth single-photon imaging. Opt. Express. 24, 1873-1888(2016).

【32】J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin and J.-Y. Tourneret. Bayesian 3D reconstruction of complex scenes from single-photon lidar data. SIAM J. Imaging Sci. 12, 521-550(2019).

【33】Z. T. Harmany, R. F. Marcia and R. M. Willett. This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice. IEEE Trans. Image Process. 21, 1084-1096(2012).

【34】M. J. DigonnetM. J. Digonnet. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. : CRC Press, (2001).

【35】. https://github.com/quantum-inspired-lidar/long-range-photon-efficient-imaging.git. (0).. https://github.com/quantum-inspired-lidar/long-range-photon-efficient-imaging.git. (0).

【36】B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu and G. Wu. High-speed photon-counting laser ranging for broad range of distances. Sci. Rep. 8, (2018).

【37】R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher and G. S. Buller. Three-dimensional single-photon imaging through obscurants. Opt. Express. 27, 4590-4611(2019).

【38】J. J. DegnanJ. J. Degnan. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping. Remote Sens. 8, (2016).

【39】C. Bruschini, H. Homulle, I. Antolovic, S. Burri and E. Charbon. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8, (2019).

【40】P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson and G. S. Buller. High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement. Appl. Opt. 59, 4488-4498(2020).

【41】D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik and D. M. Cornwell. Overview and results of the lunar laser communication demonstration. Proc. SPIE. 8971, (2014).

【42】H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang and X. Xie. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging. Opt. Express. 24, 3535-3542(2016).

引用该论文

Zheng-Ping Li, Xin Huang, Yuan Cao, Bin Wang, Yu-Huai Li, Weijie Jin, Chao Yu, Jun Zhang, Qiang Zhang, Cheng-Zhi Peng, Feihu Xu, and Jian-Wei Pan, "Single-photon computational 3D imaging at 45 km," Photonics Research 8(9), 1532-1540 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF