首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170602--1)

掺镱大模场光子晶体光纤的研究进展

Research Progress on Ytterbium-Doped Large Mode Area Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来,掺镱大模场光子晶体光纤由于在高峰值功率皮秒超快激光放大器方面的重要应用而受到广泛关注。简要分析了掺镱大模场光子晶体光纤的研制难点,介绍了国内外掺镱大模场光子晶体光纤的研究进展,以及应用于掺镱大模场光子晶体光纤制备的掺镱石英玻璃芯棒制备方法及其光学、光谱性能,重点介绍了中国科学院上海光学精密机械研究所基于溶胶-凝胶工艺制备大直径、低数值孔径掺镱石英玻璃芯棒玻璃,以及大模场掺镱光子晶体光纤的制备及其用于皮秒脉冲激光放大的研究进展。最后对掺镱大模场光子晶体光纤的研发及应用进行了总结及展望。

Abstract

In recent years, ytterbium (Yb)-doped large mode field photonic crystal fibers have attracted significant attention owing to their applications in high peak-power picosecond ultrafast laser amplifiers. Herein, the difficulties in the development of Yb-doped large mode field photonic crystal fibers are briefly analyzed, and the research progress of these novel fibers both at home and abroad is examined. The preparation methods and optical/spectral properties of Yb-doped silica glass mandrels used for Yb-doped large mode field photonic crystal fibers are summarized. The preparation of large diameter, low NA ytterbium-doped silica glass mandrels, large mode area Yb doped photonic crystal fibers and their applications in picosecond pulse laser amplification at the Shanghai Institute of Optics and Fine Mechanics are then discussed. Finally, the development and application of Yb-doped large mode field photonic crystal fibers are summarized, and their future prospects are detailed.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170602

所属栏目:功能光纤

基金项目:国家高科技研究发展计划、国家自然科学基金;

收稿日期:2019-05-14

修改稿日期:2019-07-15

网络出版日期:2019-09-01

作者单位    点击查看

于春雷:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
王孟:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
冯素雅:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
王世凯:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
王璠:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800中国科学院大学, 北京 100049
楼风光:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
张磊:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
陈丹平:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
胡丽丽:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800

联系人作者:胡丽丽(hulili@siom.ac.cn)

备注:国家高科技研究发展计划、国家自然科学基金;

【1】Jauregui C, Limpert J and Tünnermann A. High-power fibre lasers. Nature Photonics. 7(11), 861-867(2013).

【2】Zervas M N and Codemard C A. High power fiber lasers: a review. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), 219-241(2014).

【3】Limpert J, Stutzki F, Jansen F et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light: Science & Applications. 1(4), (2012).

【4】Hu M, Quan Z, Wang J H et al. Stimulated Brillouin scattering threshold dependent on temporal characteristics in a kilowatt-peak-power, single-frequency nanosecond pulsed fiber amplifier. Chinese Optics Letters. 14(3), (2016).

【5】Koponen J, S?derlund M, Hoffman H J et al. Photodarkening measurements in large mode area fibers. Proceedings of SPIE. 6453, (2007).

【6】Jetschke S, Unger S, Schwuchow A et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition. Optics Express. 16(20), 15540-15545(2008).

【7】Eidam T, Wirth C, Jauregui C et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Optics Express. 19(14), 13218-13224(2011).

【8】Tao R M, Ma P F, Wang X L et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photonics Research. 3(3), 86-93(2015).

【9】Petit V, Tumminelli R P, Minelly J D et al. Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD. Proceedings of SPIE. 9728, (2016).

【10】Jauregui C, Otto H J, Modsching N et al. Recent progress in the understanding of mode instabilities. Proceedings of SPIE. 9344, (2015).

【11】Ma X Q, Zhu C, Hu I N et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores. Optics Express. 22(8), 9206-9219(2014).

【12】Gu G C, Kong F T, Hawkins T et al. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers. Optics Express. 22(11), 13962-13968(2014).

【13】Jain D, Jung Y, Nunez-Velazquez M et al. Extending single mode performance of all-solid large-mode-area single trench fiber. Optics Express. 22(25), 31078-31091(2014).

【14】Stutzki F, Jansen F, Liem A et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Optics Letters. 37(6), 1073-1075(2012).

【15】Brooks C D and di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier. Applied Physics Letters. 89(11), (2006).

【16】Jain D, Jung Y M, Barua P et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers. Optics Express. 23(6), 7407-7415(2015).

【17】Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier. Optics Express. 25(13), 14892-14899(2017).

【18】Peng K, Zhan H, Ni L et al. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality. Applied Optics. 55(35), 10133-10137(2016).

【19】Kong F T, Dunn C, Parsons J et al. Large-mode-area fibers operating near single-mode regime. Optics Express. 24(10), 10295-10301(2016).

【20】Xu W B, Lin Z Q, Wang M et al. 50 μm core diameter Yb 3+/Al 3+/F - codoped silica fiber with M2<1.1 beam quality . Optics Letters. 41(3), 504-507(2016).

【21】Likhachev M E, Aleshkina S S, Shubin A V et al. Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber. [C]∥CLEO/Europe and EQEC 2011 Conference Digest, May 22-26, 2011, Munich, Germany. Washington, D.C.: OSA. CJ_P24, (2011).

【22】Liu S J, Li H Y, Tang Y X et al. Fabrication and spectroscopic properties of Yb 3+-doped silica glasses using the sol-gel method . Chinese Optics Letters. 10(8), (2012).

【23】Liu S J. Investigation on fabrication and spectroscopic properties of Yb 3+-doped silica glass and PCF fiber by sol-gel method . Shanghai: University of Chinese Academy of Sciences. (2012).
刘少俊. 溶胶-凝胶法制备掺镱石英玻璃和光子晶体光纤的研究. 上海: 中国科学院大学. (2012).

【24】Wang S K. Study on fabrication of Yb 3+-doped silica glass and its large mode area photonic crystal fiber by sol-gel method . Shanghai: University of Chinese Academy of Sciences. (2014).
王世凯. Sol-Gel法制备Yb 3+掺杂石英玻璃及大模场光子晶体光纤的研究 . 上海: 中国科学院大学. (2014).

【25】Lou F G. Study on fabrication of Yb 3+, Tm 3+-doped silica glass core rod and its large mode area fiber prepared by sol-gel method . Shanghai: University of Chinese Academy of Sciences. (2014).
楼风光. 溶胶凝胶法制备掺Yb 3+,Tm 3+石英玻璃芯棒及大模场光纤的研究 . 上海: 中国科学院大学. (2014).

【26】Xu W B. Study on performance of Yb 3+-doped silica glass and its large mode area fiber prepared by sol-gel method combing powder sintering . Shanghai: University of Chinese Academy of Sciences. (2017).
许文彬. Sol-gel 法结合粉末烧结制备掺Yb 3+石英玻璃及大模场光纤的研究 . 上海: 中国科学院大学. (2017).

【27】Hu L L, Wang S K, Lou F G et al. The preparation method of Yb-doped silica fiber core rode: 201310294400. -10-30. (2013).
胡丽丽, 王世凯, 楼风光 等. -10-30. . 掺Yb石英光纤预制棒芯棒的制备方法: 201310294400.3. (2013).

【28】Wang S, Lou F, Yu C et al. Influence of Al 3+ and P 5+ ion contents on the valence state of Yb 3+ ions and the dispersion effect of Al 3+ and P 5+ ions on Yb 3+ ions in silica glass . Journal of Materials Chemistry C. 22(2), 4406-4414(2014).

【29】Xu W B, Ren J J, Shao C Y et al. Effect of P 5+ on spectroscopy and structure of Yb 3+/Al 3+/P 5+ co-doped silica glass . Journal of Luminescence. 167, 8-15(2015).

【30】Xu W B, Yu C L, Wang S K et al. Effects of F - on the optical and spectroscopic properties of Yb 3+/Al 3+-co-doped silica glass . Optical Materials. 42, 245-250(2015).

【31】Wang F, Shao C Y, Yu C L et al. Effect of AlPO4 join concentration on optical properties and radiation hardening performance of Yb-doped Al2O3-P2O5-SiO2 glass. Journal of Applied Physics. 125(17), (2019).

【32】Keck D and Schultz P. -06-05[2019-05-01]. https:∥patents.google.com/patent/US3737292. (1973).

【33】Webb A S, Boyland A J, Standish R J et al. MCVD in situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. Journal of Non-Crystalline Solids. 356(18/19), 848-851(2010).

【34】Lenardic B and Kveder M. Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers. [C]∥Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, United States. Washington, D.C.: OSA. OThK6, (2009).

【35】Tammela S, Kiiveri P, Sarkilahti S et al. Direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers. [C]∥2002 28TH European Conference on Optical Communication, September 8-12, 2002, Copenhagen, Denmark. New York: IEEE. 9084348, (2002).

【36】Leich M, Just F, Langner A et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology. Optics Letters. 36(9), 1557-1559(2011).

【37】Benoit A, Dauliat R, Schuster K et al. Optical fiber microstructuration for strengthening single-mode laser operation in high power regime. Optical Engineering. 53(7), (2014).

【38】Langner A, Schotz G, Such M et al. A new material for high-power laser fibers. Proceedings of SPIE. 6873, (2008).

【39】Langner A, Such M, Schotz G et al. Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers. Proceedings of SPIE. 8601, (2013).

【40】Zhang W, Liu J T, Zhou G Y et al. Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology. Optical Materials Express. 7(5), 1708-1715(2017).

【41】Chen Y, Zhao N, Liu J T et al. Yb 3+-doped large-mode-area photonic crystal fiber for fiber lasers prepared by laser sintering technology . Optical Materials Express. 9(3), 1356-1364(2019).

【42】Liu S, Wang M, Zhou Q L et al. Ytterbium-doped silica photonic crystal fiber laser fabricated by the nanoporous glass sintering technique. Laser Physics. 24(6), (2014).

【43】Yang K, Zheng S P, Jiang X B et al. Luminescence and scintillation of high silica glass containing SnO. Materials Letters. 204, 5-7(2017).

【44】Chu Y B, Ma Y X, Yang Y et al. Yb 3+-doped large core silica fiber for fiber laser prepared by glass phase-separation technology . Optics Letters. 41(6), 1225-1228(2016).

【45】Chu Y B, Yang Y, Hu X W et al. Yb 3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology . Optics Express. 25(20), 24061-24067(2017).

【46】Pedrazza U, Romano V and Lüthy W. Yb 3+∶ Al 3+∶ sol-gel silica glass fiber laser . Optical Materials. 29(7), 905-907(2007).

【47】El Hamzaoui H, Courthéoux L, Nguyen V N et al. From porous silica xerogels to bulk optical glasses: the control of densification. Materials Chemistry and Physics. 121(1/2), 83-88(2010).

【48】Baz A, El Hamzaoui H, Fsaifes I et al. A pure silica ytterbium-doped sol-gel-based fiber laser. Laser Physics Letters. 10(5), (2013).

【49】El Hamzaoui H, Bouwmans G, Cassez A et al. F/Yb-codoped sol-gel silica glasses: toward tailoring the refractive index for the achievement of high-power fiber lasers. Optics Letters. 42(7), 1408-1411(2017).

【50】Li Y G, Huang J P, Li Y F et al. Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique. Journal of Lightwave Technology. 26(18), 3256-3260(2008).

【51】Wang M, Wang F, Feng S et al. 272 W quasi single-mode picosecond pulse laser of ytterbium-doped large-mode-area photonic crystal fiber. Chinese Optics Letters. 17(7), (2019).

【52】Wang S K, Li Z L, Yu C L et al. Fabrication and laser behaviors of Yb 3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method . Optical Materials. 35(9), 1752-1755(2013).

【53】Wang S K, Feng S Y, Wang M et al. Optical and laser properties of Yb 3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method . Laser Physics Letters. 10(11), (2013).

【54】Xu W B, Wang M, Feng S Y et al. Fabrication and laser amplification behavior of Yb 3+/Al 3+ co-doped photonic crystal fiber . IEEE Photonics Technology Letters. 28(4), 391-393(2016).

【55】Wang F, Hu L, Xu W et al. Manipulating refractive index, homogeneity and spectroscopy of Yb 3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers . Optics Express. 25(21), 25960-25969(2017).

【56】Wang F, Wang M, Feng S Y et al. Large-mode-area photonic crystal fiber towards pulse laser amplification based on YbAl/P/F codoped silica glass. [C]∥Advanced Solid State Lasers 2018, November 4-8, 2018, Boston, Massachusetts, United States. Washington, D.C.: OSA. ATh1A, (2018).

【57】Wang S K, Xu W B, Lou F G et al. Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method. Optical Materials Express. 6(1), 69-78(2016).

【58】Lin Z Q, Lou F G, Wang M et al. A diffraction-limited laser of 25/400 Yb 3+/Al 3+/P 5+/F - silica fiber with a zigzag refractive index profile . Laser physics. 27(8), (2017).

【59】Wang S K, Xu W B, Wang F et al. Yb 3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber . Optical Materials Express. 7(6), 2012-2022(2017).

【60】Wang M, Wang F, Yu C L et al. Ultra-low core numerical aperture large mode area photonic crystal fiber with 1 MW peak power output. Acta Optica Sinica. 39(5), (2019).
王孟, 王璠, 于春雷 等. 兆瓦峰值功率输出的超低纤芯数值孔径大模场光子晶体光纤. 光学学报. 39(5), (2019).

【61】Kosinski S G, Krol D M, Duncan T M et al. Raman and NMR spectroscopy of SiO2 glasses co-doped with Al2O3 and P2O5. Journal of Non-Crystalline Solids. 105(1/2), 45-52(1988).

引用该论文

Chunlei Yu, Meng Wang, Suya Feng, Shikai Wang, Fan Wang, Fengguang Lou, Lei Zhang, Danping Chen, Lili Hu. Research Progress on Ytterbium-Doped Large Mode Area Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170602

于春雷, 王孟, 冯素雅, 王世凯, 王璠, 楼风光, 张磊, 陈丹平, 胡丽丽. 掺镱大模场光子晶体光纤的研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF