首页 > 论文 > 激光与光电子学进展 > 57卷 > 16期(pp:160001--1)

变参数计算成像技术研究进展 (封面文章) (特邀综述)

Research Progress on Parameter-Changed Computational Imaging Techniques (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

叠层扫描成像和傅里叶叠层扫描成像可增大视场和提高分辨率。基于多距离/多高度轴向扫描和薄柱透镜旋转扫描的计算成像技术采用相位恢复算法,可以高精度重建目标的复数光场。这些成像技术在扩大视场和提高分辨率方面具有显著优势。介绍了含变参数的光学相干衍射系统在计算成像方面的研究进展。作为间接成像形式,多参数成像技术是一类将衍射成像与算法相结合的计算成像技术,实现了复值光场的精确多维表征。

Abstract

Ptychographic iterative and Fourier ptychographic imaging techniques can enhance field of view (FOV) and resolution. The parameter-changed computational imaging technique based on multi-disntance/ multi-height axial scanning and thin cylinder rotation can be used with phase retrieval algorithms to reconstruct the complex-valued fields of objects with high resolution. These imaging techniques possess prominent advantages for enlarging FOV and resolution. We review the recent research progress of the parameter-changed optical coherent diffraction imaging systems in the field of computational imaging. As a kind of indirect imaging tools, the multi-parameter imaging technique combines diffraction imaging with algorithms, which can be used to realize the accurate multi-dimensional characterization of a complex-valued light field.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.160001

所属栏目:综述

基金项目:国家自然科学基金;

收稿日期:2020-04-28

修改稿日期:2020-05-25

网络出版日期:2020-08-01

作者单位    点击查看

郭澄:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
耿勇:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
翟玉兰:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
左琴:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
温秀:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001
刘正君:哈尔滨工业大学仪器科学与工程学院, 黑龙江 哈尔滨 150001

联系人作者:刘正君(zjliu@hit.edu.cn)

备注:国家自然科学基金;

【1】Shao X P, Liu F, Li W, et al. Latest progress in computational imaging technology and application [J]. Laser & Optoelectronics Progress. 2020, 57(2): 020001.
邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展 [J]. 激光与光电子学进展. 2020, 57(2): 020001.

【2】Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy [J]. Optics Express. 2012, 20(3): 3129-3143.

【3】Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics. 2013, 7(9): 739-745.

【4】Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy [J]. Nature Methods. 2007, 4(9): 717-719.

【5】Zhang H, Cao C L, Jin G F, et al. Lensless digital holographic imaging based on compressive sensing algorithm [J]. Laser & Optoelectronics Progress. 2020, 57(8): 080001.
张华, 曹良才, 金国藩, 等. 基于压缩感知算法的无透镜数字全息成像研究 [J]. 激光与光电子学进展. 2020, 57(8): 080001.

【6】Ji X Y. Coded photography [J]. Acta Optica Sinica. 2020, 40(1): 0111012.
季向阳. 编码摄像 [J]. 光学学报. 2020, 40(1): 0111012.

【7】Wang F, Wang H, Bian Y M, et al. Applications of deep learning in computational imaging [J]. Acta Optica Sinica. 2020, 40(1): 0111002.
王飞, 王昊, 卞耀明, 等. 深度学习在计算成像中的应用 [J]. 光学学报. 2020, 40(1): 0111002.

【8】Zhang J L, Chen Q, Li J J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning [J]. Optics Letters. 2018, 43(15): 3714-3717.

【9】Chowdhury S, Chen M, Eckert R, et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images [J]. Optica. 2019, 6(9): 1211-1219.

【10】Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy [J]. Optics Express. 2014, 22(5): 4960-4972.

【11】Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik. 1972, 35(2): 237-246.

【12】Fienup J R. Phase retrieval algorithms: a comparison [J]. Applied Optics. 1982, 21(15): 2758-2769.

【13】Cheng B, Zhang X J, Liu C, et al. Birefringence measurement based on ptychgraphic iteratice engine in planar polarimeter [J]. Chinese Journal of Lasers. 2019, 46(12): 1204003.
程北, 张雪杰, 刘诚, 等. 基于衍射重建叠层相位恢复术的平面偏振双折射测量 [J]. 中国激光. 2019, 46(12): 1204003.

【14】Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination [J]. Applied Physics Letters. 2004, 85(20): 4795-4797.

【15】Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes [J]. Optics Letters. 2005, 30(8): 833-835.

【16】Greenbaum A, Luo W, Su T W, et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy [J]. Nature Methods. 2012, 9(9): 889-895.

【17】Geng Y, Tan J B, Guo C, et al. Computational coherent imaging by rotating a cylindrical lens [J]. Optics Express. 2018, 26(17): 22110-22122.

【18】Geng Y, Guo C, Zhou X Y, et al. Enhanced multi-rotation computational coherent imaging based on pre-illumination and simulated annealing compensation [J]. Journal of Optics. 2019, 21(11): 115701.

【19】Zuo Q, Geng Y, Shen C, et al. Accurate angle estimation based on moment for multirotation computation imaging [J]. Applied Optics. 2020, 59(2): 492-499.

【20】Katkovnik V, Shevkunov I, Petrov N V, et al. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments [J]. Optica. 2017, 4(7): 786-794.

【21】Sidorenko P, Cohen O. Single-shot ptychography [J]. Optica. 2016, 3(1): 9-14.

【22】Holloway J, Asif M S, Sharma M K, et al. Toward long-distance subdiffraction imaging using coherent camera arrays [J]. IEEE Transactions on Computational Imaging. 2016, 2(3): 251-265.

【23】Liu Z J, Guo C, Tan J B, et al. Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms [J]. Journal of Optics. 2015, 17(2): 025701.

【24】Migukin A, Katkovnik V, Astola J. Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm [J]. Journal of the Optical Society of America A. 2011, 28(6): 993-1002.

【25】Guo C, Zhao Y, Tan J, et al. Multi-distance phase retrieval with a weighted shrink-wrap constraint [J]. Optics and Lasers in Engineering. 2019, 113: 1-5.

【26】Guo C, Li Q, Wei C, et al. Axial multi-image phase retrieval under tilt illumination [J]. Scientific Reports. 2017, 7(1): 7562.

【27】Rivenson Y, Zhang Y B, Gunaydin H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light: Science & Applications. 2018, 7(2): 17141.

【28】Shen C, Guo C, Geng Y, et al. Noise-robust pixel-super-resolved multi-image phase retrieval with coherent illumination [J]. Journal of Optics. 2018, 20(11): 115703.

【29】Guo C, Zhao Y X, Tan J B, et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination [J]. Optics Express. 2018, 26(11): 14407-14420.

【30】Zhang W H, Cao L C, Brady D J, et al. Twin-image-free holography: a compressive sensing approach [J]. Physical Review Letters. 2018, 121(9): 093902.

【31】Guo C, Liu X M, Kan X C, et al. Lensfree on-chip microscopy based on dual-plane phase retrieval [J]. Optics Express. 2019, 27(24): 35216-35229.

【32】Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval [J]. Scientific Reports. 2018, 8: 6436.

【33】Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy [J]. Scientific Reports. 2013, 3: 1717.

【34】Navruz I, Coskun A F, Wong J, et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array [J]. Lab on a Chip. 2013, 13(20): 4015-4023.

【35】Vandewalle P, Süsstrunk S, Vetterli M. A frequency domain approach to registration of aliased images with application to super-resolution [J]. EURASIP Journal on Advances in Signal Processing. 2006, 2006: 071459.

【36】Hardie R. A fast image super-resolution algorithm using an adaptive Wiener filter [J]. IEEE Transactions on Image Processing. 2007, 16(12): 2953-2964.

【37】Guo C, Zhang F L, Zhang X Q, et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm [J]. Journal of Optics. 2020, 22(5): 055703.

【38】Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging [J]. Ultramicroscopy. 2009, 109(10): 1256-1262.

【39】Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine [J]. Optica. 2017, 4(7): 736-745.

【40】Zhang F C, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging [J]. Optics Express. 2013, 21(11): 13592-13606.

【41】Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography [J]. Ultramicroscopy. 2012, 120: 64-72.

【42】He X L, Veetil S P, Pan X C, et al. High-speed ptychographic imaging based on multiple-beam illumination [J]. Optics Express. 2018, 26(20): 25869-25879.

【43】Bian Z C, Dong S Y, Zheng G A. Adaptive system correction for robust Fourier ptychographic imaging [J]. Optics Express. 2013, 21(26): 32400-32410.

【44】Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy [J]. Optics Express. 2016, 24(18): 20724-20744.

【45】Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction [J]. Optics Express. 2018, 26(18): 23661-23674.

【46】Guo K K, Zhang Z B, Jiang S W, et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination [J]. Biomedical Optics Express. 2018, 9(1): 260-275.

【47】Wu C, Sudheendran N, Singh M, et al. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging [J]. Journal of Biomedical Optics. 2016, 21(2): 026002.

【48】Lin Y C, Chen H C, Tu H Y, et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy [J]. Optics Letters. 2017, 42(7): 1321-1324.

【49】Wu J G, Conry M, Gu C H, et al. Paired-angle-rotation scanning optical coherence tomography forward-imaging probe [J]. Optics Letters. 2006, 31(9): 1265-1267.

【50】Shen C, Bao X J, Tan J B, et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint [J]. Optics Express. 2017, 25(14): 16235-16249.

【51】Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing. 2007, 16(8): 2080-2095.

【52】Shen Y, Blondel W. Adjustable frequency filtering and weighted feedback for iterative phase retrieval under noisy conditions [J]. Optics and Lasers in Engineering. 2020, 124: 105808.

引用该论文

Guo Cheng,Geng Yong,Zhai Yulan,Zuo Qin,Wen Xiu,Liu Zhengjun. Research Progress on Parameter-Changed Computational Imaging Techniques[J]. Laser & Optoelectronics Progress, 2020, 57(16): 160001

郭澄,耿勇,翟玉兰,左琴,温秀,刘正君. 变参数计算成像技术研究进展[J]. 激光与光电子学进展, 2020, 57(16): 160001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF