首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:182701--1)

准周期演化量子行走中的纠缠关联

Entanglement in Quasi-Periodic Evolution of Quantum Walks

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了随相位位置变化的量子行走的性质,以及硬币和行走者之间的纠缠度。行走者回到原点的概率以及位置方差随演化时间呈准周期性变化,这种量子行走即为准周期演化量子行走。通过纠缠熵度量硬币和行走者之间的纠缠关联。数值计算表明纠缠熵与系统初态、演化步数以及相位因子有关。选择合适的硬币操作,纠缠熵随着演化步数呈现准周期性变化。对于给定的初态,选择适当的相位因子和演化步数,可使硬币与行走者处于最大纠缠态。

Abstract

We study the entanglement between the coin and walker in quantum walks which vary with phase position. The probability of returning to the position of the walker and the position variance vary with the evolution time quasi-periodically. Therefore, such quantum walks are called quasi-periodic evolutionary quantum walks. The coin-walker entanglement is measured by the von Neumann entropy of the coin. Through numerical calculations, we find that the entanglement entropy depends on the initial state, number of evolution steps, and phase factors. When the suitable coin operations are selected, the entanglement entropy changes in the quasi-period pattern. The maximum entanglement state can be obtained when the correct parameters of the evolution operator and number of evolution steps are selected for the given initial state.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.182701

所属栏目:量子光学

基金项目:国家自然科学理论物理合作研修项目、国家自然科学青年科学基金;

收稿日期:2019-03-20

修改稿日期:2019-04-11

网络出版日期:2019-09-01

作者单位    点击查看

张融:南京邮电大学电子与光学工程学院, 江苏 南京 210042
刘文婷:南京邮电大学电子与光学工程学院, 江苏 南京 210042
王杰:南京邮电大学电子与光学工程学院, 江苏 南京 210042
郑培涛:南京邮电大学电子与光学工程学院, 江苏 南京 210042
洪发:南京邮电大学电子与光学工程学院, 江苏 南京 210042

联系人作者:张融(zhangr@njupt.edu.cn)

备注:国家自然科学理论物理合作研修项目、国家自然科学青年科学基金;

【1】Aharonov Y, Davidovich L and Zagury N. Quantum random walks. Physical Review A. 48(2), 1687-1690(1993).

【2】Wang Y, Song B G and Zhao Y J. Identifying phase distortion of interference fringe based on energy distribution. Laser & Optoelectronics Progress. 56(1), (2019).
王一, 宋宝根, 赵延军. 基于能量分布识别干涉条纹相位畸变的方法. 激光与光电子学进展. 56(1), (2019).

【3】Song N F, Hu X Y, Xu X B et al. Measurement and analysis of scattering in solid-core polarization-maintaining photonic crystal fibers. Laser & Optoelectronics Progress. 56(1), (2019).
宋凝芳, 胡雪妍, 徐小斌 等. 实芯保偏光子晶体光纤散射测量与分析. 激光与光电子学进展. 56(1), (2019).

【4】Childs A M, Cleve R, Deotto E et al. Exponential algorithmic speedup by a quantum walk. [C]∥Proceedings of the 35th ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA. New York: ACM. 59-68(2003).

【5】Shenvi N, Kempe J and Whaley K B. Quantum random-walk search algorithm. Physical Review A. 67(5), (2003).

【6】Kempe J. Quantum random walks:an introductory overview. Contemporary Physics. 44(4), 307-327(2003).

【7】Oliveira A C, Portugal R and Donangelo R. Decoherence in two-dimensional quantum walks. Physical Review A. 74(1), (2006).

【8】Vieira R. Amorim E P M, Rigolin G. Dynamically disordered quantum walk as a maximal entanglement generator. Physical Review Letters. 111(18), (2013).

【9】?tefaňák M. Skoup S. Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs . Physical Review A. 94(2), (2016).

【10】Rakovszky T and Asboth J K. Localization, delocalization, and topological phase transitions in the one-dimensional split-step quantum walk. Physical Review A. 92(5), (2015).

【11】Lee C W, Kurzyński P and Nha H. Quantum walk as a simulator of nonlinear dynamics:nonlinear Dirac equation and solitons. Physical Review A. 92(5), (2015).

【12】Crespi A, Osellame R, Ramponi R et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photonics. 7(4), 322-328(2013).

【13】Zeng M and Yong E H. Discrete-time quantum walk with phase disorder: localization and entanglement entropy. Scientific Reports. 7(1), (2017).

【14】Xue P, Zhang R, Bian Z H et al. Localized state in a two-dimensional quantum walk on a disordered lattice. Physical Review A. 92(4), (2015).

【15】Vakulchyk I, Fistul M V, Qin P et al. Anderson localization in generalized discrete-time quantum walks. Physical Review B. 96(14), (2017).

【16】Abal G, Siri R, Romanelli A et al. Quantum walk on the line: entanglement and nonlocal initial conditions. Physical Review A. 73(4), (2006).

【17】Carneiro I, Loo M, Xu X et al. Entanglement in coined quantum walks on regular graphs. New Journal of Physics. 7(1), 156-186(2005).

【18】Venegas-Andraca S E, Ball J L, Burnett K et al. . Quantum walks with entangled coins. New Journal of Physics. 7, (2005).

引用该论文

Rong Zhang,Wenting Liu,Jie Wang,Peitao Zheng,Fa Hong. Entanglement in Quasi-Periodic Evolution of Quantum Walks[J]. Laser & Optoelectronics Progress, 2019, 56(18): 182701

张融,刘文婷,王杰,郑培涛,洪发. 准周期演化量子行走中的纠缠关联[J]. 激光与光电子学进展, 2019, 56(18): 182701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF