首页 > 论文 > Chinese Optics Letters > 19卷 > 1期(p:013602)

Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials [Editors' Pick]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Recently reported plasmon-induced transparency (PIT) in metamaterials endows the optical structures in classical systems with quantum optical effects. In particular, the nonreconfigurable nature in metamaterials makes multifunctional applications of PIT effects in terahertz communications and optical networks remain a great challenge. Here, we present an ultrafast process-selectable modulation of the PIT effect. By incorporating silicon islands into diatomic metamaterials, the PIT effect is modulated reversely, depending on the vertical and horizontal configurations, with giant modulation depths as high as 129% and 109%. Accompanied by the enormous switching of the transparent window, remarkable slow light effect occurs.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL202119.013602

所属栏目:Nanophotonics, Metamaterials, and Plasmonics

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 11804387, 11802339, 11805276, 11902358, 61805282, and 61801498) and the Scientific Researches Foundation of National University of Defense Technology (Nos. ZK18-03-22, ZK18-01-03, and ZK18-03-36).

收稿日期:2020-07-08

录用日期:2020-09-04

网络出版日期:2020-11-26

作者单位    点击查看

孙豪:College of Computer, National University of Defense Technology, Changsha 410073, China
杨杰:National Innovation Institute of Defense Technology, Beijing 100010, China
刘衡竹:College of Computer, National University of Defense Technology, Changsha 410073, China
吴丹:Graduate School, National University of Defense Technology, Changsha 410073, China
郑鑫:National Innovation Institute of Defense Technology, Beijing 100010, China

联系人作者:郑鑫(zhengxin@nudt.edu.cn)

备注:This work was supported by the National Natural Science Foundation of China (Nos. 11804387, 11802339, 11805276, 11902358, 61805282, and 61801498) and the Scientific Researches Foundation of National University of Defense Technology (Nos. ZK18-03-22, ZK18-01-03, and ZK18-03-36).

【1】J. J. Longdell, E. Fraval, M. J. Sellars and N. B. Manson. Stopped light with storage times greater than one second using EIT in a solid. Phys. Rev. Lett. 95, (2005).

【2】L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 397, (1999).

【3】S. E. HarrisS. E. Harris. Electromagnetically induced transparency. Phys. Today. 50, (1997).

【4】A. Kasapi, M. Jain, G. Y. Yin and S. E. Harris. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, (1995).

【5】Y. He, H. Zhou, Y. Jin and S. He. Plasmon induced transparency in a dielectric waveguide. Appl. Phys. Lett. 99, (2011).

【6】C. L. G. Alzar, M. A. G. Martinez and P. Nussenzveig. Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, (2002).

【7】X. Yang, M. Yu, D.-L. Kwong and C. W. Wong. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 102, (2009).

【8】P. Tassin, L. Zhang, T. Koschny, E. N. Economou and C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, (2009).

【9】Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan and M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, (2006).

【10】N. Liu, L. Langguth, T. Weiss, J. K?stel, M. Fleischhauer, T. Pfau and H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, (2009).

【11】C. Liu, P. Liu, C. Yang, Y. Lin and H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon. 142, (2019).

【12】H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang and H. Lee. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater. 7, (2019).

【13】M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han and W. Zhang. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Opt. Express. 25, (2017).

【14】J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han and W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, (2012).

【15】R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti and W. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett. 99, (2011).

【16】X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho and J. Li. Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett. 103, (2013).

【17】A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets and H. Altug. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. 108, (2011).

【18】N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos and H. Giessen. Three-dimensional plasmon rulers. Science. 332, (2011).

【19】Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang and X. Zhang. Enhanced sensing performance by the plasmonic analogue of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett. 97, (2010).

【20】R. Taubert, M. Hentschel, J. K?stel and H. Giessen. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 12, (2012).

【21】R. Schittny, M. Kadic, T. Buckmann and M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science. 345, (2014).

【22】J. B. PendryJ. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, (2000).

【23】D. Lu and Z. Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, (2012).

【24】X. Tian and Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res. 4, (2016).

【25】H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang and H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater. 30, (2018).

【26】M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew and T. E. Murphy. Tunable terahertz hybrid metal–graphene plasmons. Nano Lett. 15, (2015).

【27】Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson and J.-B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun. 9, (2018).

【28】H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer and W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, (2008).

【29】Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li and C. M. Soukoulis. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances. ACS Photon. 5, (2018).

【30】D. Shrekenhamer, J. Montoya, S. Krishna and W. J. Padilla. Four‐color Metamaterial absorber THz spatial light modulator. Adv. Opt. Mater. 1, (2013).

【31】H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang and H. Lee. Electrically controllable molecularization of terahertz meta‐atoms. Adv. Mater. 30, (2018).

【32】S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn and H. Choi. Ultra-high modulation depth exceeding 2400% in optically controlled topological surface plasmons. Nat. Commun. 6, (2015).

【33】W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong and N. I. Zheludev. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 3, (2012).

【34】M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson and R. D. Averitt. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature. 487, (2012).

【35】Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu and X. Cheng. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater. 7, (2019).

【36】Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu and X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy. 7, (2019).

【37】H. Sun, Y. Hu, Y. Tang, J. You, J. Zhou, H. Liu and X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photon. Res. 8, (2020).

【38】H. Sun, Y. Tang, Y. Hu, J. You, H. Liu and X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Chin. Opt. Lett. 18, (2020).

【39】J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu and X. Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photon. Res. 7, (2019).

【40】J. Zhou, C. Zhang, Q. Liu, J. You, X. Zheng, X. Cheng and T. Jiang. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics. 9, (2020).

【41】Y. Hu, T. Jiang, H. Sun, M. Tong, J. You, X. Zheng, Z. Xu and X. Cheng. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photon. Rev. 14, (2020).

【42】Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng and T. Jiang. Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. Adv. Sci. 7, (2020).

【43】G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh and P. Mandal. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16, (2016).

引用该论文

Hao Sun, Jie Yang, Hengzhu Liu, Dan Wu, Xin Zheng, "Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials," Chinese Optics Letters 19(1), 013602 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF