首页 > 论文 > 中国激光 > 47卷 > 9期(pp:909002--1)

毫米波全息成像快速反向传播算法研究

Fast Backpropagation Algorithm for Millimeter-Wave Holographic Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了在保证图像质量的前提下进一步加快毫米波全息成像的图像重建速度,提出了基于降维策略的快速反向传播重建 (DR-BP) 算法。基于亚毫米波单站式成像实验(280~320 GHz)以及多发多收正交阵列成像FEKO电磁仿真实验(70~80 GHz)对DR-BP算法进行验证。实验结果表明,DR-BP算法相比仅适用于单站式成像的快速傅里叶变换算法,重建图像边缘干扰少,相比传统的反向传播算法,重建速度大幅提升,本文实验中获得的图像质量相同时,重建速度可提升60倍。

Abstract

To further improve the reconstruction speed under the premise of high-resolution millimeter-wave images, a fast backpropagation algorithm based on the dimensionality reduction strategy (DR-BP) is proposed. The proposed algorithm was experimentally verified via submillimeter-wave single-input and single-output (SISO) imaging (280-320 GHz) and orthogonal array multiple-input and multiple-output (MIMO) FEKO simulation imaging (70-80 GHz). The experimental results indicate that the DR-BP algorithm is able to obtain images with less margin interference compared with the fast Fourier transform-based algorithms for SISO imaging. Moreover, the DR-BP algorithm significantly improves the reconstruction speed—60 times that of the traditional BP algorithm, as shown by the results of the experiments.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O438.1

DOI:10.3788/CJL202047.0909002

所属栏目:全息与信息处理

基金项目:国家自然科学基金委员会与中国民用航空局联合资助项目;

收稿日期:2020-03-10

修改稿日期:2020-04-26

网络出版日期:2020-09-01

作者单位    点击查看

牛轶杰:清华大学工程物理系, 北京100084中国民航科学技术研究院, 北京 100028
柳兴:清华大学工程物理系, 北京100084危爆物品扫描探测技术国家工程实验室, 北京 100084
乔灵博:危爆物品扫描探测技术国家工程实验室, 北京 100084

联系人作者:乔灵博(lukethu@mail.tsinghua.edu.cn)

备注:国家自然科学基金委员会与中国民用航空局联合资助项目;

【1】Hou B J, Yang M H, Sun X W. Real-time object detection for millimeter-wave images based on improved faster regions with convolutional neural networks [J]. Laser & Optoelectronics Progress. 2019, 56(13): 131009.
侯冰基, 杨明辉, 孙晓玮. 基于改进Faster RCNN的毫米波图像实时目标检测 [J]. 激光与光电子学进展. 2019, 56(13): 131009.

【2】Jing W, An J F, Jiang G, et al. Standoff fully-polarimetric holographic-radar-imaging experiments in terahertz regime for concealed target detection [J]. Chinese Journal of Lasers. 2019, 46(6): 0614032.
经文, 安健飞, 江舸, 等. 针对隐藏目标检测的太赫兹波站开式全极化全息雷达成像实验 [J]. 中国激光. 2019, 46(6): 0614032.

【3】Collins D H, McMakin D L, Hall T E, et al. -10-03 . 1995.

【4】Sheen D M, Dale Collins H, Hall T E, et al. -09-17 . 1996.

【5】Sheen D M. McMakin D L, Hall T E. Three-dimensional millimeter-wave imaging for concealed weapon detection [J]. IEEE Transactions on Microwave Theory and Techniques. 2001, 49(9): 1581-1592.

【6】Qiao L B, Wang Y X, Zhao Z R, et al. Spatial sampling for millimeter-wave holographic imaging [J]. Journal of Tsinghua University (Science and Technology). 2014, 54(11): 1407-1411.
乔灵博, 王迎新, 赵自然, 等. 毫米波全息成像的空间采样条件 [J]. 清华大学学报(自然科学版). 2014, 54(11): 1407-1411.

【7】Sheen D. McMakin D, Hall T. Near-field three-dimensional radar imaging techniques and applications [J]. Applied Optics. 2010, 49(19): E83-E93.

【8】Tan K, Wu S Y, Wang Y C, et al. A novel two-dimensional sparse MIMO array topology for UWB short-range imaging [J]. IEEE Antennas and Wireless Propagation Letters. 2016, 15: 702-705.

【9】Zhuge X D, Yarovoy A G. Study on two-dimensional sparse MIMO UWB arrays for high resolution near-field imaging [J]. IEEE Transactions on Antennas and Propagation. 2012, 60(9): 4173-4182.

【10】Ahmed S S, Schiessl A, Schmidt L P. A novel fully electronic active real-time imager based on a planar multistatic sparse array [J]. IEEE Transactions on Microwave Theory and Techniques. 2011, 59(12): 3567-3576.

【11】Zhuge X D, Yarovoy A G. Three-dimensional near-field MIMO array imaging using range migration techniques [J]. IEEE Transactions on Image Processing. 2012, 21(6): 3026-3033.

【12】Alvarez Y, Rodriguez-Vaqueiro Y, Gonzalez-Valdes B, et al. Fourier-based imaging for multistatic radar systems [J]. IEEE Transactions on Microwave Theory and Techniques. 2014, 62(8): 1798-1810.

【13】Abbasi M, Shayei A, Shabany M, et al. Fast Fourier-based implementation of synthetic aperture radar algorithm for multistatic imaging system [J]. IEEE Transactions on Instrumentation and Measurement. 2019, 68(9): 3339-3349.

【14】Gao J K, Qin Y L, Deng B, et al. Novel efficient 3D short-range imaging algorithms for a scanning 1D-MIMO array [J]. IEEE Transactions on Image Processing. 2018, 27(7): 3631-3643.

【15】Ahmed S, Schiessl A, Gumbmann F, et al. Advanced microwave imaging [J]. IEEE Microwave Magazine. 2012, 13(6): 26-43.

【16】Qiao L B, Wang Y X, Zhao Z R, et al. Exactreconstruction for near-field three-dimensional planar millimeter-wave holographic imaging [J]. Journal of Infrared, Millimeter, and Terahertz Waves. 2015, 36(12): 1221-1236.

【17】Wang G W, Qi F, Liu Z, et al. Comparison between back projection algorithm and range migration algorithm in terahertz imaging [J]. IEEE Access. 2020, 8: 18772-18777.

【18】Wang Z Y, Qiao L B, Wang Y X, et al. Wide-band three-dimensional submillimeter-wave holographic imaging system [J]. Journal of Terahertz Science and Electronic Information Technology. 2016, 14(6): 833-837.
王子野, 乔灵博, 王迎新, 等. 高分辨力亚毫米波全息成像系统 [J]. 太赫兹科学与电子信息学报. 2016, 14(6): 833-837.

【19】Wu L, Lü G Q, Xue Z T, et al. Super-resolution reconstruction of images based on multi-scale recursive network [J]. Acta Optica Sinica. 2019, 39(6): 0610001.
吴磊, 吕国强, 薛治天, 等. 基于多尺度递归网络的图像超分辨率重建 [J]. 光学学报. 2019, 39(6): 0610001.

【20】Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network [J]. Acta Optica Sinica. 2019, 39(2): 0210003.
席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建 [J]. 光学学报. 2019, 39(2): 0210003.

引用该论文

Niu Yijie,Liu Xing,Qiao Lingbo. Fast Backpropagation Algorithm for Millimeter-Wave Holographic Imaging[J]. Chinese Journal of Lasers, 2020, 47(9): 0909002

牛轶杰,柳兴,乔灵博. 毫米波全息成像快速反向传播算法研究[J]. 中国激光, 2020, 47(9): 0909002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF