首页 > 论文 > 光学学报 > 40卷 > 20期(pp:2005001--1)

制造误差对大尺度超振荡平面透镜聚焦性能的影响 (封面文章)

Effect of Manufacturing Errors on Focusing Performance of Large-Scale Super-Oscillatory Lens (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对大尺度超振荡平面透镜(SOL)的实际应用,基于严格的矢量角谱理论定量研究了多种典型制造误差对大尺度SOL聚焦性能的影响规律。理论计算结果表明:横向环带制造误差对振幅型SOL(金属膜)和相位型SOL(介质层)聚焦性能的影响规律基本一致,环带中心位置偏差主要影响SOL的聚焦焦距,环带宽度偏差主要影响SOL的聚焦光斑分布;±150 nm范围内的位置偏差和宽度偏差是大尺度SOL各环带的最大制造允许公差;对于相位型SOL,纵向刻蚀深度偏差主要影响聚焦光斑的强度,π相位差对应的聚焦光斑强度最大;为使相位型SOL聚焦光斑保持较高强度,应使介质层刻蚀深度对应的相位调制量保持在(0.8~1.2)π的范围内。

Abstract

The influence of different manufacturing errors on focusing performance of large-scale super-oscillatory lens (SOL) is revealed through a quantitative study for practical use based on rigorous vector angular spectrum theory. Theoretical calculation results show that the influence of the manufacturing errors on focusing performance of amplitude-type SOL (metallic film) and phase-type SOL (dielectric layer) is the same; central position deviation mainly affects the focusing focal length, while the width deviation mainly influences the focal spot distribution; the position and width deviations within the range of ±150 nm are the maximum allowable manufacturing tolerances for each SOL ring belt. Longitudinal etching depth deviation mainly affects the focused intensity of the phase-type SOL. When the relative phase difference introduced by the etching depth is π, the focused intensity reaches its maximum. To maintain a greater focused intensity, phase modulation should be kept within the range of 0.8π--1.2 π.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436.1

DOI:10.3788/AOS202040.2005001

所属栏目:衍射与光栅

基金项目:国家自然科学优秀青年科学基金、国家重点研发计划;

收稿日期:2020-05-22

修改稿日期:2020-07-06

网络出版日期:2020-10-01

作者单位    点击查看

何韬:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
刘涛:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
刘康:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
李国卿:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
王佳怡:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
田博:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
杨树明:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049

联系人作者:刘涛(liu8483@xjtu.edu.cn); 杨树明(liu8483@xjtu.edu.cn);

备注:国家自然科学优秀青年科学基金、国家重点研发计划;

【1】Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging [J]. Nature Materials. 2012, 11(5): 432-435.

【2】Yuan G H, Rogers E T, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing [J]. Light: Science & Applications. 2017, 6(9): e17036.

【3】Li M Y, Li W L, Li H Y, et al. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci [J]. Scientific Reports. 2017, 7: 1335.

【4】Diao J S, Yuan W Z, Yu Y T, et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles [J]. Optics Express. 2016, 24(3): 1924-1933.

【5】Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens [J]. Scientific Reports. 2016, 6: 38859.

【6】Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles [J]. Scientific Reports. 2017, 7: 4697.

【7】Yuan G H. Rogers E T F, Roy T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths [J]. Scientific Reports. 2015, 4: 6333.

【8】Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave [J]. Opto-Electronic Engineering. 2018, 45(4): 170660.
武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜 [J]. 光电工程. 2018, 45(4): 170660.

【9】Chen G, Li Y Y, Yu A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation [J]. Scientific Reports. 2016, 6: 29068.

【10】Wu J, Wu Z X, He Y H, et al. Creating a nondiffracting beam with sub-diffraction size by a phase spatial light modulator [J]. Optics Express. 2017, 25(6): 6274-6282.

【11】Li W L, Yu Y T, Yuan W Z. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication [J]. Nanoscale. 2019, 11(1): 311-320.

【12】Li W L, He P, Yuan W Z, et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance [J]. Nanoscale. 2020, 12(13): 7063-7071.

【13】Liu T, Tan J B, Liu J, et al. Vectorial design of super-oscillatory lens [J]. Optics Express. 2013, 21(13): 15090-15101.

【14】Liu T, Wang T, Yang S M, et al. Rigorous electromagnetic test of super-oscillatory lens [J]. Optics Express. 2015, 23(25): 32139-32148.

【15】Liu T, Yang S M, Jiang Z D. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces [J]. Optics Express. 2016, 24(15): 16297-16308.

【16】Liu T. Research on vectorial diffraction far-field super-resolution focusing related theory and confocal microscopic imaging [D]. Harbin: Harbin Institute of Technology. 2014, 68-74.
刘涛. 矢量衍射远场超分辨聚焦相关理论及共焦显微成像研究 [D]. 哈尔滨: 哈尔滨工业大学. 2014, 68-74.

【17】Huang K, Liu H. Garcia-Vidal F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light [J]. Nature Communications. 2015, 6: 7059.

【18】Ni H B, Yuan G H, Sun L D, et al. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography [J]. RSC Advances. 2018, 8(36): 20117-20123.

【19】Qin F, Huang K, Wu J F, et al. Asupercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance [J]. Advanced Materials. 2017, 29(8): 1602721.

【20】Yu Y T, Li W L, Li H Y, et al. An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses [J]. Nanomaterials. 2018, 8(4): 185.

【21】Ruan D S. Study on terahertz sub-diffraction focusing planar lens based on optical super-oscillation [D]. Chongqin: Chongqing university. 2018, 46-50.
阮德圣. 基于超振荡技术的太赫兹超衍射聚焦平面透镜研究 [D]. 重庆: 重庆大学. 2018, 46-50.

【22】Cai Y L, Deng X W, Tang D F, et al. Application and key technology research of sub-micron grating exposure system [J]. Equipment for Electronic Products Marufacturing. 2019, 48(1): 33-36, 59.
蔡颖岚, 邓学文, 唐代飞, 等. 亚微米光栅曝光系统的应用及设备关键技术研究 [J]. 电子工业专用设备. 2019, 48(1): 33-36, 59.

【23】Liu T, Yang S M, Jiang Z D. Optimization design method for electromagnetic focusing micro-structured metallic-film multi-annular plates Acta Metrologica Sinica[J]. 0, 2016(4): 337-341.
刘涛, 杨树明, 蒋庄德. 微结构金属膜环带片电磁聚焦优化设计方法 计量学报[J]. 0, 2016(4): 337-341.

【24】An C, Chu J K, Zhang R. Optimization of bilayer sub-wavelength metallic grating based on genetic algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(22): 220501.
安超, 褚金奎, 张然. 基于遗传算法的双层亚波长金属光栅优化 [J]. 激光与光电子学进展. 2019, 56(22): 220501.

引用该论文

He Tao,Liu Tao,Liu Kang,Li Guoqing,Wang Jiayi,Tian Bo,Yang Shuming. Effect of Manufacturing Errors on Focusing Performance of Large-Scale Super-Oscillatory Lens[J]. Acta Optica Sinica, 2020, 40(20): 2005001

何韬,刘涛,刘康,李国卿,王佳怡,田博,杨树明. 制造误差对大尺度超振荡平面透镜聚焦性能的影响[J]. 光学学报, 2020, 40(20): 2005001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF