首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901003--1)

1550 nm波段窄线宽高调谐带宽激光光源

1550 nm Laser Source with Narrow Linewidth and High Tuning Bandwidth

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着空间技术的发展,空间数据传输速率日益成为制约空间科技应用的瓶颈。空间相干光通信技术由于其较高的通信灵敏度、较强的抗干扰能力和较高的保密性成为研究的热点。在空间相干光通信技术中,零差相干光通信体制在理论上具有最好的灵敏度和抗干扰能力,但需要复杂的锁相闭环系统,对本振激光器的线宽和激光频率调谐带宽都提出了很高的要求。在1550 nm波段,现有的常规激光器难以同时满足窄线宽和高调谐带宽的要求。为此,采用窄线宽种子源结合外电光调制和窄带光栅滤波的方案,实现了光谱信噪比约为28 dB、线宽约为5 kHz、激光频率调谐带宽约为1.5 MHz的激光光源输出。

Abstract

With the development of space technology, spatial data transmission rate is becoming a bottleneck associated with its application. Spatial coherent optical communication technology has become a popular research topic in many countries because of its high communication sensitivity, anti-interference ability, and high confidentiality. In this technology, the homodyne coherent optical communication system theoretically exhibits optimal sensitivity and anti-interference ability, but simultaneously requires a complex phase-locked closed-loop system and a local oscillator laser with large linewidth and laser-frequency-tuning bandwidth. In the 1550-nm band, it is difficult for the conventional lasers to simultaneously satisfy the narrow linewidth and high tuning bandwidth requirements. Herein, a narrow linewidth seed source combined with external electro-optic modulation and narrowband grating filtering is used to create a laser source exhibiting a spectral signal-to-noise ratio of approximately 28 dB, a linewidth of approximately 5 kHz, and a laser-frequency-tuning bandwidth of approximately 1.5 MHz.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0901003

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、“十三五”航天领域预研专用技术项目;

收稿日期:2019-01-11

修改稿日期:2019-05-06

网络出版日期:2019-09-01

作者单位    点击查看

古建标:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049上海科技大学物质科学与技术学院, 上海 201210
朱福南:中国科学院大学材料与光电研究中心, 北京 100049
刘磊:中国科学院大学材料与光电研究中心, 北京 100049
赵思伟:中国科学院大学材料与光电研究中心, 北京 100049
魏芳:中国科学院大学材料与光电研究中心, 北京 100049
李璇:中国科学院大学材料与光电研究中心, 北京 100049
朱韧:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
侯霞:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
陈卫标:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

联系人作者:朱韧(zrzsiom@163.com)

备注:国家自然科学基金、“十三五”航天领域预研专用技术项目;

【1】Yue C L, Li J W, Sun J F et al. Homodyne coherent optical receiver for intersatellite communication. Applied Optics. 57(27), 7915-7923(2018).

【2】Pfau T, Hoffmann S, Adamczyk O et al. Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond. Optics Express. 16(2), 866-872(2008).

【3】Zhang Z, Sun J F, Lu B et al. Costas optical phase lock loop system design in inter-orbit coherent laser communication. Chinese Journal of Lasers. 42(8), (2015).
张震, 孙建锋, 卢斌 等. 星间相干激光通信中科斯塔斯锁相系统设计. 中国激光. 42(8), (2015).

【4】Heine F, Schwander T, Lange R et al. Space qualified laser sources. Proceedings of SPIE. 6189, (2006).

【5】Kong Y X, Ke X Z and Yang Y. Bit error rate of laser linewidth in spatial coherent optical communication link. Laser & Optoelectronics Progress. 55(4), (2018).
孔英秀, 柯熙政, 杨媛. 激光器线宽对空间相干光通信链路传输误码率研究. 激光与光电子学进展. 55(4), (2018).

【6】Zhang H Z and Dong Z. Laser linewidth tolerance of pre-equalization technology in coherent optical communication. Laser & Optoelectronics Progress. 54(3), (2017).
张惠忠, 董泽. 相干光通信中预均衡技术的激光器线宽容忍度. 激光与光电子学进展. 54(3), (2017).

【7】Kuo B P P and Radic S. Fast wideband source tuning by extra-cavity parametric process. Optics Express. 18(19), 19930-19940(2010).

【8】Kane T J and Byer R L. Monolithic, unidirectional single-mode Nd∶YAG ring laser. Optics Letters. 10(2), 65-67(1985).

【9】Zang E J, Cao J P, Zhong M C et al. Output power and frequency stability of monolithic semi-nonplanar ring lasers. Proceedings of SPIE. 4914, 281-284(2002).

【10】Gao C Q, Gao M W, Lin Z F et al. LD pumped monolithic non-planar ring resonator single frequency lasers. Chinese Journal of Lasers. 36(7), 1704-1709(2009).
高春清, 高明伟, 林志锋 等. LD抽运单块非平面环形腔单频激光器. 中国激光. 36(7), 1704-1709(2009).

【11】Zhu R, Zhou J, Liu J Q et al. Solid state tunable single-frequency laser based on non-planar ring oscillator. Chinese Journal of Lasers. 38(11), (2011).
朱韧, 周军, 刘继桥 等. 可调谐单频非平面环形腔固体激光器. 中国激光. 38(11), (2011).

【12】Numata K, Camp J, Krainak M A et al. Performance of planar-waveguide external cavity laser for precision measurements. Optics Express. 18(22), 22781-22788(2010).

【13】Liu K R and Littman M G. Novel geometry for single-mode scanning of tunable lasers. Optics Letters. 6(3), 117-118(1981).

【14】Asseh A, Storoy H, Kringleboth J T et al. 10 cm Yb 3+ DFB fibre laser with permanent phase shifted grating . Electronics Letters. 31(12), 969-970(1995).

【15】Spiegelberg C. Compact 100 mW fiber laser with 2 kHz linewidth. [C]∥Optical Fiber Communications Conference 2003, March 23, 2003, Atlanta, Georgia, United States. Washington, D. C.: OSA. PD45, (2003).

【16】Chen J L, Liang L P, Chen B et al. Study on postprocess of λ/4-shifted DFB Yb-doped fiber laser. Chinese Journal of Lasers. 30(7), 581-584(2003).
陈嘉琳, 梁丽萍, 陈柏 等. 掺Yb相移分布反馈光纤激光器的后期制作与研究. 中国激光. 30(7), 581-584(2003).

【17】Zhu Q, Chen X B, Chen J P et al. DFB fiber laser fabrication by moving phase mask Optical Fiber & Electric Cable and Their Applications. 2006(1), 17-20, 29(0).
朱清, 陈小宝, 陈建平 等. 相位掩膜板移动法制作DFB光纤激光器 光纤与电缆及其应用技术. 2006(1), 17-20, 29(0).

【18】Kanno A, Honda S, Yamanaka R et al. Ultrafast and broadband frequency chirp signal generation using a high-extinction-ratio optical modulator. Optics Letters. 35(24), 4160-4162(2010).

【19】Wei F, Lu B, Wang J et al. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking. Optics Express. 23(4), 4970-4980(2015).

【20】Electronic Systems. AES-. Prabhu V K. PSK performance with imperfect carrier phase recovery. IEEE Transactions on Aerospace. 12(2), 275-286(1976).

【21】Kazovsky L. Decision-driven phase-locked loop for optical homodyne receivers:performance analysis and laser linewidth requirements. Journal of Lightwave Technology. 3(6), 1238-1247(1985).

【22】He J K and Zeng X D. Research on balanced optical heterodyne detection and local laser intensity noise suppression. Electronic Science and Technology. 23(8), 25-31(2010).
何佶珂, 曾晓东. 光外差平衡检测与本振光强度噪声抑制研究. 电子科技. 23(8), 25-31(2010).

【23】Yamashita S and Okoshi T. Suppression of common-mode beat noise from optical amplifiers using a balanced receiver. Electronics Letters. 28(21), 1970-1972(1992).

引用该论文

Jianbiao Gu,Funan Zhu,Lei Liu,Siwei Zhao,Fang Wei,Xuan Li,Ren Zhu,Xia Hou,Weibiao Chen. 1550 nm Laser Source with Narrow Linewidth and High Tuning Bandwidth[J]. Chinese Journal of Lasers, 2019, 46(9): 0901003

古建标,朱福南,刘磊,赵思伟,魏芳,李璇,朱韧,侯霞,陈卫标. 1550 nm波段窄线宽高调谐带宽激光光源[J]. 中国激光, 2019, 46(9): 0901003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF