首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170623--1)

基于大空气孔保偏微结构光纤偏振回旋滤波器的光微流折射率传感器

Optofluidic Refractive Index Sensor Based on Large Air-Hole Polarization-Maintaining Microstructured Optical Fiber Rocking Filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于大空气孔保偏微结构光纤偏振回旋滤波器(PM-MOF-RF)的光微流折射率传感器。保偏微结构光纤(PM-MOF)沿轴向引入周期性往复扭转结构,可实现光纤中正交偏振模的谐振耦合,通过偏振检测,可得到类似于长周期光栅的透射光谱,从而获得偏振回旋滤波器(PRF)。基于耦合模理论,对该器件的透射光谱进行仿真。在该器件两端与单模光纤(SMF)连接处分别接入一小段C形光纤,可将待测液体导入和导出MOF的空气孔而不影响SMF与MOF的光信号耦合,从而得到一个全光纤的光微流折射率传感器。通过有限元分析方法模拟微流折射率在1.333附近变化时PM-MOF的相模式双折射色散曲线,进而可得不同微流折射率的透射光谱,通过追踪光谱波长漂移,得到7196.4 nm/RIU(RIU为折射率单元)的折射率灵敏度,同时可知当按比例缩小光纤尺寸时,可将其灵敏度提升至16754.0 nm/RIU。

Abstract

An optofluidic refractive index sensor based on large air-hole polarization-maintaining microstructured optical fiber polarization rocking filter (PM-MOF-PRF) is proposed. Resonant coupling between orthogonal polarization modes occurs when a periodic back-and-forth twist is induced by PM-MOF along the axial. Via polarized detection, a transmission spectrum similar to a long-period fiber grating can be observed, and thus a polarization rocking filter (PRF) is obtained. The transmission spectrum of this device is simulated based on mode-coupling theory. When splicing a short piece of C-shaped fiber between the PM-MOF and single-mode fibers (SMF) at both end of the PRF, it allows fluids running into and out of the air hole channels without affecting light coupling between the MOF and SMF. Therefore, an all-fiber optofluidic refractive index sensor can be constructed. Then the phase modal birefringence dispersion curves of the PM-MOF for microfluidics with refractive index around 1.333 is simulated by finite element method, and the transmission spectra of the PRF for different microfluidic refractive index values are obtained. By tracking the wavelength shift of the spectra, a refractive index sensitivity of 7196.4 nm/RIU is achieved, and the value can be improved to 16754.0 nm/RIU when the MOF is tapered to half of the initial diameter.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170623

所属栏目:功能光纤

基金项目:广东省自然科学基金 、广东省特支计划科技创新青年拔尖人才、广州市珠江科技新星专项;

收稿日期:2019-04-26

修改稿日期:2019-05-15

网络出版日期:2019-09-01

作者单位    点击查看

祁鸿:暨南大学光子技术研究院, 广东省光纤传感与通信技术重点实验室, 广东 广州 510632
武创:暨南大学光子技术研究院, 广东省光纤传感与通信技术重点实验室, 广东 广州 510632
李杰:暨南大学光子技术研究院, 广东省光纤传感与通信技术重点实验室, 广东 广州 510632
关柏鸥:暨南大学光子技术研究院, 广东省光纤传感与通信技术重点实验室, 广东 广州 510632

联系人作者:武创(wuchuang.ipt@gmail.com)

备注:广东省自然科学基金 、广东省特支计划科技创新青年拔尖人才、广州市珠江科技新星专项;

【1】Borisov S M and Wolfbeis O S. Optical biosensors. Chemical Reviews. 108(2), 423-461(2008).

【2】McDonagh C, Burke C S and MacCraith B D. Optical chemical sensors. Chemical Reviews. 108(2), 400-422(2008).

【3】Whitesides G M. The origins and the future of microfluidics. Nature. 442(7101), 368-373(2006).

【4】Psaltis D, Quake S R and Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442(7101), 381-386(2006).

【5】Monat C, Domachuk P and Eggleton B J. Integrated optofluidics: a new river of light. Nature Photonics. 1(2), 106-114(2007).

【6】Fan X D and White I M. Optofluidic microsystems for chemical and biological analysis. Nature Photonics. 5(10), 591-597(2011).

【7】Russell P. Photonic crystal fibers. Science. 299(5605), 358-362(2003).

【8】Fini J M. Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology. 15(6), 1120-1128(2004).

【9】Eggleton B, Kerbage C, Westbrook P et al. Microstructured optical fiber devices. Optics Express. 9(13), 698-713(2001).

【10】Calcerrada M, García-Ruiz C and González-Herráez M. Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser & Photonics Reviews. 9(6), 604-627(2015).

【11】Ritari T, Tuominen J, Ludvigsen H et al. Gas sensing using air-guiding photonic bandgap fibers. Optics Express. 12(17), 4080-4087(2004).

【12】Yang X H, Zheng Y, Luo S Z et al. Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide. Sensors and Actuators B: Chemical. 182, 571-575(2013).

【13】Yang X H, Yuan T T, Teng P P et al. An in-fiber integrated optofluidic device based on an optical fiber with an inner core. Lab on a Chip. 14(12), 2090-2095(2014).

【14】Phan Huy M C, Laffont G, Dewynter V et al. . Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. Optics Letters. 32(16), 2390-2392(2007).

【15】Zhang A P, Yan G F, Gao S R et al. Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings. Applied Physics Letters. 98(22), (2011).

【16】Rindorf L and Bang O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Optics Letters. 33(6), 563-565(2008).

【17】Wu D K C, Kuhlmey B T and Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters. 34(3), 322-324(2009).

【18】Villatoro J, Kreuzer M P, Jha R et al. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Optics Express. 17(3), 1447-1453(2009).

【19】Zhang N, Humbert G, Wu Z F et al. In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber. Optics Express. 24(24), 27674-27682(2016).

【20】Wu C. Tse M L V, Liu Z Y, et al. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer. Optics Letters. 38(17), 3283-3286(2013).

【21】Wu C. Tse M L V, Liu Z Y, et al. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer. The Analyst. 139(21), 5422-5429(2014).

【22】Liu Z Y and Wu C. Tse M L V, et al. Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber. Journal of Lightwave Technology. 32(11), 2113-2122(2014).

【23】?olc I. Birefringent chain filters. Journal of the Optical Society of America. 55(6), 621-625(1965).

【24】Stolen R H, Ashkin A, Pleibel W et al. In-line fiber-polarization-rocking rotator and filter. Optics Letters. 9(7), 300-302(1984).

【25】Kakarantzas G, Ortigosa-Blanch A, Birks T A et al. Structural rocking filters in highly birefringent photonic crystal fiber. Optics Letters. 28(3), 158-160(2003).

引用该论文

Hong Qi, Chuang Wu, Jie Li, Baiou Guan. Optofluidic Refractive Index Sensor Based on Large Air-Hole Polarization-Maintaining Microstructured Optical Fiber Rocking Filter[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170623

祁鸿, 武创, 李杰, 关柏鸥. 基于大空气孔保偏微结构光纤偏振回旋滤波器的光微流折射率传感器[J]. 激光与光电子学进展, 2019, 56(17): 170623

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF