首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1030004--1)

红提糖度和硬度的高光谱成像无损检测

Nondestructive Detection of Sugar Content and Firmness of Red Globe Grape by Hyperspectral Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

红提的糖度和硬度是评价红提品质的重要指标,探究了基于高光谱成像技术的红提糖度和硬度的无损检测方法及最佳预测模型。在红提果粒的三种放置模式(横放、果柄侧朝下、果柄侧朝上)下,分别采集213个样本在400~1000 nm波长范围内的高光谱图像,对比分析光谱采集的最优模式;然后在最优采集模式下对光谱进行预处理;应用遗传算法(GA)、连续投影算法(SPA)、竞争性自适应重加权(CARS)算法和无信息变量消除法(UVE)针对原始光谱提取特征波长;结合化学计量学方法分别建立基于全光谱和特征波长的偏最小二乘回归(PLSR)、最小二乘支持向量机(LSSVM)和随机森林(RF)的红提糖度、硬度的无损预测模型。结果表明:基于RF建立的糖度和硬度模型的效果较优;预测糖度的最优模型为遗传算法优化的随机森林(GA-RF),其校正集相关系数(Rc)、预测集相关系数(Rp)分别为0.969、0.928,校正集均方根误差(RMSEC)、预测集均方根误差(RMSEP)分别为0.266、0.254;预测硬度的最优模型为基于移动窗口平滑结合连续投影算法优化的随机森林(MA-SPA-RF),其Rc、Rp分别为0.961、0.932,RMSEC、RMSEP分别2.119、1.634。研究结果表明基于高光谱成像技术预测红提的糖度和硬度是可行的。

Abstract

The sugar content and firmness of red globe grapes are important indicators for evaluating their quality. This study explores nondestructive detection methods and best prediction models for determining the sugar content and firmness of red globe grapes based on hyperspectral imaging technology. The hyperspectral images of 213 samples, in the wavelength range of 400-1000 nm, are collected in three placement orientations (horizontal, fruit stalk-side down, and fruit stalk-side up). The optimal orientation for spectral imaging is compared and analyzed, and subsequently the spectrum is preprocessed in the optimal orientation. Several preprocessing methods, i.e., genetic algorithm (GA), successive projections algorithm (SPA), competitive adaptive reweighed sampling (CARS) algorithm, and uninformative variable elimination algorithm (UVE), are applied to the images to extract characteristic wavelengths from the original spectra. Using chemometrics methods, combined with either partial least squares regression (PLSR), least squares support vector machine (LSSVM), and random forest (RF) analysis based on full spectra and characteristic wavelengths, several protocols are established to mathematically predict the sugar content and firmness of red globe grapes from the images. Results show that the sugar and firmness model based on RF performs the best. The optimal model for predicting sugar content proves to be RF optimized by GA (GA-RF), with corrected-set correlation coefficient (Rc) and predicted-set correlation coefficient (Rp) values of 0.969 and 0.928, respectively, and corrected-set root-mean-square error (RMSEC) and predicted-set root-mean-square error (RMSEP) values of 0.266 and 0.254, respectively. The optimal model for predicting firmness proves to be RF optimized by moving-average method and SPA (MA-SPA-RF), with Rc and Rp values of 0.961 and 0.932, respectively, and RMSEC and RMSEP values of 2.119 and 1.634, respectively. These results prove the sugar content and firmness of red globe grapes can be nondestructively predicted via hyperspectral imaging.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TS255.7

DOI:10.3788/AOS201939.1030004

所属栏目:光谱学

基金项目:国家自然科学基金、湖北省自然科学基金、湖北省研究与开发计划项目;

收稿日期:2019-03-26

修改稿日期:2019-07-08

网络出版日期:2019-10-01

作者单位    点击查看

高升:华中农业大学工学院, 湖北 武汉 430070
王巧华:华中农业大学工学院, 湖北 武汉 430070农业部长江中下游农业装备重点实验室, 湖北 武汉 430070
付丹丹:华中农业大学工学院, 湖北 武汉 430070
李庆旭:华中农业大学工学院, 湖北 武汉 430070

联系人作者:王巧华(wqh@mail.hzau.edu.cn)

备注:国家自然科学基金、湖北省自然科学基金、湖北省研究与开发计划项目;

【1】Xu F, Fu D D, Wang Q H et al. Nondestructive detection of sugar content and acidity in red globe table grapes using visible near infrared spectroscopy based on Monte-Carlo cross validation-competitive adaptive reweighted sampling-random forest (MCCV-CARS-RF) [J]. Food Science. 2018, 39(8): 149-154.
许锋, 付丹丹, 王巧华 等. 基于MCCV-CARS-RF建立红提糖度和酸度的可见-近红外光谱无损检测方法 [J]. 食品科学. 2018, 39(8): 149-154.

【2】Tian H L, Zhang P, Nong S Z et al. Analysis on texture properties of treated grape fruit with 1-MCP based on TPA Test [J]. Food & Machinery. 2011, 27(3): 104-107.
田海龙, 张平, 农绍庄 等. 基于TPA测试法对1-MCP处理后葡萄果实质构性能的分析 [J]. 食品与机械. 2011, 27(3): 104-107.

【3】Deng Y, Wu Y and Li Y F. Effects of temperature and relative humidity on postharvest grapes berry firmness [J]. Food Science. 2007, 28(3): 46-49.
邓云, 吴颖, 李云飞. 温度和相对湿度对采后葡萄浆果硬度的影响 [J]. 食品科学. 2007, 28(3): 46-49.

【4】Dong J L and Guo W C. Nondestructive detection of soluble solid content of postharvest kiwifruits based on hyperspectral imaging technology [J]. Food Science. 2015, 36(16): 101-106.
董金磊, 郭文川. 采后猕猴桃可溶性固形物含量的高光谱无损检测 [J]. 食品科学. 2015, 36(16): 101-106.

【5】Guan X M, Du J, Zhang L R et al. Optimization and visualization for the prediction of apple sugar content based on hyperspectral imaging technology [J]. Journal of Optoelectronics·Laser. 2018, 29(2): 173-180.
管晓梅, 杜军, 张立人 等. 基于高光谱技术的果糖检测优化算法和可视化方法 [J]. 光电子·激光. 2018, 29(2): 173-180.

【6】Wang Z W, Chi Q, Guo W C et al. Internal quality detection of apples during late developmental period based on near-infrared spectral technology [J]. Transactions of the Chinese Society for Agricultural Machinery. 2018, 49(5): 348-354.
王转卫, 迟茜, 郭文川 等. 基于近红外光谱技术的发育后期苹果内部品质检测 [J]. 农业机械学报. 2018, 49(5): 348-354.

【7】Li B, Cobo-Medina M, Lecourt J et al. Application of hyperspectral imaging for nondestructive measurement of plum quality attributes [J]. Postharvest Biology and Technology. 2018, 141: 8-15.

【8】Lu R. Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images [J]. Sensing and Instrumentation for Food Quality and Safety. 2007, 1(1): 19-27.

【9】Liu Y D, Chen X M and Ouyang A G. Non-destructive measurement of soluble solid content in Gannan navel oranges by visible/near-infrared spectroscopy [J]. Acta Optica Sinica. 2008, 28(3): 478-481.
刘燕德, 陈兴苗, 欧阳爱国. 可见/近红外光谱法无损检测赣南脐橙可溶性固形物 [J]. 光学学报. 2008, 28(3): 478-481.

【10】Sun J T, Ma B X, Dong J et al. Study on maturity discrimination of Hami melon with hyperspectral imaging technology combined with characteristic wavelengths selection methods and SVM [J]. Spectroscopy and Spectral Analysis. 2017, 37(7): 2184-2191.
孙静涛, 马本学, 董娟 等. 高光谱技术结合特征波长筛选和支持向量机的哈密瓜成熟度判别研究 [J]. 光谱学与光谱分析. 2017, 37(7): 2184-2191.

【11】Feng D, Ji J W, Zhang L et al. Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging [J]. Chinese Journal of Luminescence. 2017, 38(6): 799-806.
冯迪, 纪建伟, 张莉 等. 基于高光谱成像提取苹果糖度与硬度最佳波长 [J]. 发光学报. 2017, 38(6): 799-806.

【12】Li R and Fu L S. Nondestructive measurement of firmness and sugar content of blueberries based on hyperspectral imaging [J]. Transactions of the Chinese Society of Agricultural Engineering. 2017, 33(z1): 362-366.
李瑞, 傅隆生. 基于高光谱图像的蓝莓糖度和硬度无损测量 [J]. 农业工程学报. 2017, 33(z1): 362-366.

【13】Li X L, Wei Y Z, Xu J et al. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology [J]. Postharvest Biology and Technology. 2018, 143: 112-118.

【14】Mo C, Kim M S, Kim G et al. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging [J]. Biosystems Engineering. 2017, 159: 10-21.

【15】Fan S X, Huang W Q, Guo Z M et al. Assessment of influence of origin variability on robustness of near infrared models for soluble solid content of apples [J]. Chinese Journal of Analytical Chemistry. 2015, 43(2): 239-244.
樊书祥, 黄文倩, 郭志明 等. 苹果产地差异对可溶性固形物近红外光谱检测模型影响的研究 [J]. 分析化学. 2015, 43(2): 239-244.

【16】Zhu D S, Zhang Q M, Cao X H et al. Effect of relative humidity on the changes in water and texture of kyoho grape during storage [J]. Food Science. 2014, 35(22): 340-345.
朱丹实, 张巧曼, 曹雪慧 等. 湿度条件对巨峰葡萄贮藏过程中水分及质构变化的影响 [J]. 食品科学. 2014, 35(22): 340-345.

【17】Jiang X S and Zhou H P. Research progress on non-destructive testing of agricultural products quality based on genetic algorithm [J]. Jiangsu Agricultural Sciences. 2013, 41(12): 17-19, 20.
蒋雪松, 周宏平. 基于遗传算法的农产品品质无损检测研究进展 [J]. 江苏农业科学. 2013, 41(12): 17-19, 20.

【18】Ye S F, Wang D and Min S G. Successive projections algorithm combined with uninformative variable elimination for spectral variable selection [J]. Chemometrics and Intelligent Laboratory Systems. 2008, 91(2): 194-199.

【19】Li J B, Peng Y K, Chen L P et al. Near-infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in “Ya” pear [J]. Spectroscopy and Spectral Analysis. 2014, 34(5): 1264-1269.
李江波, 彭彦昆, 陈立平 等. 近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定 [J]. 光谱学与光谱分析. 2014, 34(5): 1264-1269.

【20】Liu Y D, Xiao H C, Sun X D et al. Spectral feature selection and discriminant model building for citrus leaf Huanglongbing [J]. Transactions of the Chinese Society of Agricultural Engineering. 2018, 34(3): 180-187.
刘燕德, 肖怀春, 孙旭东 等. 柑桔叶片黄龙病光谱特征选择及检测模型 [J]. 农业工程学报. 2018, 34(3): 180-187.

【21】Liu Y D, Ye L Y, Sun X D et al. Maturity evaluation model of tangerine based on spectral index [J]. Chinese Optics. 2018, 11(1): 83-91.
刘燕德, 叶灵玉, 孙旭东 等. 基于光谱指数的蜜橘成熟度评价模型研究 [J]. 中国光学. 2018, 11(1): 83-91.

【22】Jiang X Q, Ye Q, Lin Y et al. Inverting study on soil water content based on harmonic analysis and hyperspectral remote sensing [J]. Acta Optica Sinica. 2017, 37(10): 1028001.
姜雪芹, 叶勤, 林怡 等. 基于谐波分析和高光谱遥感的土壤含水量反演研究 [J]. 光学学报. 2017, 37(10): 1028001.

【23】Mao B H, Sun H, Liu H J et al. Prediction of winter wheat chlorophyll content based on gram-Schmidt and SPXY algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery. 2017, 48(S1): 160-165.
毛博慧, 孙红, 刘豪杰 等. 基于正交变换与SPXY样本划分的冬小麦叶绿素诊断 [J]. 农业机械学报. 2017, 48(S1): 160-165.

【24】Peng Y, Shi C J, Zhu Y M et al. Qualitative and quantitative analysis algorithms based on terahertz spectroscopy for biomedical detection [J]. Chinese Journal of Lasers. 2019, 46(6): 0614002.
彭滟, 施辰君, 朱亦鸣 等. 太赫兹光谱技术在生物医学检测中的定性与定量分析算法 [J]. 中国激光. 2019, 46(6): 0614002.

【25】Ma S X, Liu C T, Li H C et al. Feature extraction based on linear embedding and tensor manifold for hyperspectral image [J]. Acta Optica Sinica. 2019, 39(4): 0412001.
马世欣, 刘春桐, 李洪才 等. 基于线性嵌入和张量流形的高光谱特征提取 [J]. 光学学报. 2019, 39(4): 0412001.

引用该论文

Gao Sheng,Wang Qiaohua,Fu Dandan,Li Qingxu. Nondestructive Detection of Sugar Content and Firmness of Red Globe Grape by Hyperspectral Imaging[J]. Acta Optica Sinica, 2019, 39(10): 1030004

高升,王巧华,付丹丹,李庆旭. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报, 2019, 39(10): 1030004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF