首页 > 论文 > 中国激光 > 46卷 > 9期(pp:906001--1)

倾斜锥形微透镜单模光纤激发高阶涡旋光模式

Excitation of High-Order Optical Vortex Modes by Tilting Tapered and Lensed Single Mode Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种在环形芯光纤中激发高阶涡旋光模式的方法,通过控制锥形微透镜单模光纤与环形芯光纤之间的倾斜角度和错位距离,实现了高阶涡旋光模式的激发。由数值模拟与实验测试结果可知,倾斜角度和错位距离分别约为8°和2 μm时,高质量的二阶涡旋光模式被激发。此外,由于锥形微透镜光纤具有聚焦光束的特性,其倾斜错位激发可以提高光的耦合效率,该方法与使用普通单模光纤的错位激发法相比,光的耦合效率提高13%左右。激发出的高阶涡旋光模式在高分辨率显微镜、光学微观操纵和光学传感等应用领域中具有巨大的应用潜力。

Abstract

A method for exciting high-order optical vortex modes in an annular-core fiber is proposed. The method involves controlling the tilt angle and the offset distance between the tapered and lensed single mode fiber (SMF) and the annular-core fiber. Numerical simulation and experimental verification results show that the excitation of the high quality second-order optical vortex mode can be realized by optimizing the tilt angle and the offset distance to approximately 8° and 2 μm, respectively. This tilted offset excitation method based on a tapered and lensed SMF can improve the coupling efficiency because of the focusing effect of the tapered and lensed SMF. Compared with excitation by a standard SMF, an enhancement in the coupling efficiency of approximately 13% is found by using the tapered and lensed SMF. The excited high-order optical vortex modes show considerable potential for high-resolution microscopy, optical micromanipulation, optical sensing, etc.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0906001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、上海教育发展基金会和上海市教育委员会主办的“曙光计划”;

收稿日期:2019-04-15

修改稿日期:2019-05-13

网络出版日期:2019-09-01

作者单位    点击查看

宋巍:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
刘奂奂:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
庞拂飞:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
杨俊锋:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
张春香:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
文建湘:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
商娅娜:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
黄素娟:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
陈娜:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
曾祥龙:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
王廷云:上海大学通信与信息工程学院特种光纤与光接入网重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444

联系人作者:王廷云(tywang@shu.edu.cn)

备注:国家自然科学基金、上海教育发展基金会和上海市教育委员会主办的“曙光计划”;

【1】Shi P, Du L P and Yuan X C. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation. Optics Express. 26(18), 23449-23459(2018).

【2】Padgett M and Bowman R. Tweezers with a twist. Nature Photonics. 5(6), 343-348(2011).

【3】Simpson N B, Allen L and Padgett M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. Journal of Modern Optics. 43(12), 2485-2491(1996).

【4】Ding D S, Zhang W, Zhou Z Y et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Physical Review Letters. 114(5), (2015).

【5】Yu S F, Pang F F, Liu H H et al. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing. Applied Physics Letters. 111(9), (2017).

【6】Milione G, Wang T, Han J et al. Remotely sensing an object''''s rotational orientation using the orbital angular momentum of light [Invited]. Chinese Optics Letters. 15(3), (2017).

【7】Bouchal Z and Celechovsky R. Mixed vortex states of light as information carriers. New Journal of Physics. 6, (2004).

【8】Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 340(6140), 1545-1548(2013).

【9】Huang H, Xie G D, Yan Y et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters. 39(2), 197-200(2014).

【10】Allen L and Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A. 45(11), 8185-8189(1992).

【11】Zhu G X, Hu Z Y, Wu X et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Optics Express. 26(2), 594-604(2018).

【12】Gregg P, Kristensen P and Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers. Optica. 2(3), 267-270(2015).

【13】Liu J F, Xing D K, Zeng X Y et al. Orbital angular momentum multiplexing technology based on optical fiber. Laser & Optoelectronics Progress. 55(5), (2018).
刘剑飞, 邢登科, 曾祥烨 等. 基于光纤的轨道角动量复用技术的研究进展. 激光与光电子学进展. 55(5), (2018).

【14】Gregg P, Mirhosseini M, Rubano A et al. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. Optics Letters. 40(8), 1729-1732(2015).

【15】Schemmel P, Pisano G and Maffei B. Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Optics Express. 22(12), 14712-14726(2014).

【16】Beijersbergen M W. Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications. 96(1/2/3), 123-132(1993).

【17】Wang J, Liu J, Li S H et al. Experimental demonstration of free-space optical communications using OFDM-QPSK/16QAM-carrying fractional orbital angular momentum (OAM) multiplexing. [C]∥Optical Fiber Communication Conference, March 22-26, 2015, Los Angeles, California, Unitied States. Washington, DC: OSA. M2F, (2015).

【18】Rodenburg B. Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Optics Letters. 37(17), 3735-3737(2012).

【19】Gao J Q, Sun J F, Li J W et al. Coupling method for making space light into single-mode fiber based on laser nutation. Chinese Journal of Lasers. 43(8), (2016).
高建秋, 孙建锋, 李佳蔚 等. 基于激光章动的空间光到单模光纤的耦合方法. 中国激光. 43(8), (2016).

【20】Li L, Zhang B, Xia Y W et al. Pulse temporal profile measurement technology of frequency modulation based on self-focusing lens coupling optical fiber sampling for high power laser facility. Chinese Journal of Lasers. 44(5), (2017).
李磊, 张波, 夏彦文 等. 基于自聚焦透镜耦合光纤取样的高功率激光装置调频脉冲时间波形测量技术. 中国激光. 44(5), (2017).

【21】Bozinovic N, Golowich S, Kristensen P et al. Control of orbital angular momentum of light with optical fibers. Optics Letters. 37(13), 2451-2453(2012).

【22】Zhao Y H, Liu Y Q, Zhang C Y et al. All-fiber mode converter based on long-period fiber gratings written in few-mode fiber. Optics Letters. 42(22), 4708-4711(2017).

【23】Wen J X, He X Y, Xing J F et al. All-fiber OAM amplifier with high purity and broadband spectrum gain based on fused taper vortex-beam coupler. IEEE Photonics Journal. 10(6), (2018).

【24】Jin X Q, Pang F F, Zhang Y et al. Generation of the first-order OAM modes in single-ring fibers by offset splicing technology. IEEE Photonics Technology Letters. 28(14), 1581-1584(2016).

【25】Xia F, Zhao Y, Hu H F et al. Broadband generation of the first-order OAM modes in two-mode fiber by offset splicing and fiber rotating technology. Optics & Laser Technology. 112, 436-441(2019).

【26】Viswanathan N K. Krishna Inavalli V V G. Generation of optical vector beams using a two-mode fiber. Optics Letters. 34(8), 1189-1191(2009).

【27】Ke X Z and Ge T. Experiment on generation of vortex light with few-mode fiber. Chinese Journal of Lasers. 44(11), (2017).
柯熙政, 葛甜. 利用少模光纤产生涡旋光的实验. 中国激光. 44(11), (2017).

【28】Ramachandran S, Kristensen P and Yan M F. Generation and propagation of radially polarized beams in optical fibers. Optics Letters. 34(16), 2525-2527(2009).

【29】Ramachandran S, Gregg P, Kristensen P et al. On the scalability of ring fiber designs for OAM multiplexing. Optics Express. 23(3), 3721-3730(2015).

【30】Alder T, Stohr A, Heinzelmann R et al. High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber. IEEE Photonics Technology Letters. 12(8), 1016-1018(2000).

【31】Thual M, Rochard P, Chanclou P et al. Contribution to research on micro-lensed fibers for modes coupling. Fiber and Integrated Optics. 27(6), 532-541(2008).

【32】Song W, Yang J F, Liu H H et al. Generation of OAM modes by using tapered lensed single mode fiber. [C]∥2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China. New York: IEEE. 18355846, (2018).

【33】Boudreau R A. -06-25[2019-02-15]. https:∥patents.google.com/patent/US5026138A/en. (1991).

引用该论文

Wei Song,Huanhuan Liu,Fufei Pang,Junfeng Yang,Chunxiang Zhang,Jianxiang Wen,Yana Shang,Sujuan Huang,Na Chen,Xianglong Zeng,Tingyun Wang. Excitation of High-Order Optical Vortex Modes by Tilting Tapered and Lensed Single Mode Fiber[J]. Chinese Journal of Lasers, 2019, 46(9): 0906001

宋巍,刘奂奂,庞拂飞,杨俊锋,张春香,文建湘,商娅娜,黄素娟,陈娜,曾祥龙,王廷云. 倾斜锥形微透镜单模光纤激发高阶涡旋光模式[J]. 中国激光, 2019, 46(9): 0906001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF