首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1100001--1)

激光粉末床熔融制备金属骨植入物

Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光粉末床熔融(L-PBF)能够精确高效地制备复杂结构,适用于目前主流的医用金属材料,可赋予骨科植入物定制化的宏观微观结构,快速响应个性化的临床治疗需求,最大程度地适应骨缺损部位的生理环境并加快骨修复重建进程。本文从生物材料、结构设计和制造工艺角度出发,全面评述了激光粉末床熔融制备金属骨科植入物的发展现状,重点对钛合金和钽合金等不可降解金属以及镁合金和锌合金等可降解金属的激光粉末床熔融工艺特性及力学性能进行了比较分析,并对该技术在骨科植入物制备领域的未来发展进行了展望。

Abstract

Laser powder bed fusion (L-PBF) can accurately and efficiently produce complicated structures made of various medical metals, giving orthopedic implants with customized macro and micro geometry, so that they can quickly respond to personalized clinical treatment needs according to the specific physiological environment, and accelerate the process of bone repair and reconstruction to the greatest extent. This article firstly introduces the current development of metal orthopedic implants fabricated by the L-PBF from the perspective of biomaterials, structural design and manufacturing process in general. Then, it discusses the unique processing characteristics and mechanical properties of non-degradable metals such as titanium and tantalum alloys and biodegradable metals such as magnesium and zinc alloys. Finally, the future development of the L-PBF in the field of orthopedic implants preparation is prospected.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TH164

DOI:10.3788/CJL202047.1100001

所属栏目:综述

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2020-06-01

修改稿日期:2020-07-06

网络出版日期:2020-11-01

作者单位    点击查看

尹浜兆:清华大学摩擦学国家重点实验室, 北京100084清华大学机械工程系, 北京 100084
秦瑜:清华大学摩擦学国家重点实验室, 北京100084清华大学机械工程系, 北京 100084
温鹏:清华大学摩擦学国家重点实验室, 北京100084清华大学机械工程系, 北京 100084
郑玉峰:北京大学工学院材料科学与工程系, 北京 100871
田耘:北京大学第三医院骨科, 北京 100191

联系人作者:温鹏(wenpeng@tsinghua.edu.cn); 郑玉峰(wenpeng@tsinghua.edu.cn); 田耘(wenpeng@tsinghua.edu.cn);

备注:国家重点研发计划、国家自然科学基金;

【1】Qin W, Zhang D. 2020—2026 global and Chinese customized orthopedic implant industry development status and investment prospect analysis report Beijing: Zhongzhilin Information Technology Co [R]. Ltd. 2020.
秦伟, 张东. 2020—2026全球与中国定制骨科植入物行业发展现状调研及投资前景分析报告[R] . 北京: 中智林信息技术有限公司. 2020.

【2】Zhao Zhenyu, Qu A. Analysis of orthopedic implant market in China[R] . Beijing: Huaxia Cornerstone Industry Service Group. 2020.
兆振宇, 屈艾. 我国骨科植入物市场情况分析[R] . 北京: 华夏基石产业服务集团. 2020.

【3】Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives [J]. Materials Science and Engineering C. 2017, 78: 1246-1262.

【4】García-Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration [J]. Bone. 2015, 81: 112-121.García-Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration [J]. Bone. 2015, 81: 112-121.

【5】2020-06-01] . https:∥www.iso.org/standard/69669.html. 2015.

【6】Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts [J]. Journal of Mechanical Engineering. 2014, 50(21): 140-151.
杨永强, 宋长辉, 王迪. 激光选区熔化技术及其在个性化医学中的应用 [J]. 机械工程学报. 2014, 50(21): 140-151.
Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts [J]. Journal of Mechanical Engineering. 2014, 50(21): 140-151.
杨永强, 宋长辉, 王迪. 激光选区熔化技术及其在个性化医学中的应用 [J]. 机械工程学报. 2014, 50(21): 140-151.

【7】Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs [J]. Journal of Orthopaedic Research. 2016, 34(3): 369-385.

【8】Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering [J]. Biotechnology Advances. 2016, 34(5): 740-753.

【9】Zhu Y F, Wang L Q, Yang P, et al. Research progress of β titanium alloy and its application prospects in orthopedics [J]. Orthopaedic Biomechanics Materials and Clinical Study. 2011, 8(4): 25-28.
朱永锋, 王立强, 杨平, 等. β钛合金研究进展及其在骨科中的应用前景 [J]. 生物骨科材料与临床研究. 2011, 8(4): 25-28.

【10】Ren Y B. Research and application status of medical high nitrogen nickel-free stainless steel Advanced Materials Industry[J]. 0, 2015(7): 44-49.
任伊宾. 医用高氮无镍不锈钢的研究及应用现状 新材料产业[J]. 0, 2015(7): 44-49.

【11】Jia Z J, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses [J]. Biomaterials. 2016, 75: 203-222.

【12】Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Materials Science and Engineering R. 2014, 77: 1-34.

【13】Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals: definition, criteria, and design [J]. Advanced Functional Materials. 2019, 29(18): 1805402.

【14】Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metallurgica Sinica. 2017, 53(3): 257-297.
郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报. 2017, 53(3): 257-297.

【15】Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: current research status and future perspectives [J]. Acta Biomaterialia. 2019, 98: 3-22.

【16】Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Reviews. 2012, 57(3): 133-164.

【17】DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-process, structure and properties [J]. Progress in Materials Science. 2018, 92: 112-224.

【18】Zhang F, Gao Z J, Ma T, et al. Metal powder materials for additive manufacturing and their preparation methods [J]. Industrial Technology Innovation. 2017, 4(4): 59-63.
张飞, 高正江, 马腾, 等. 增材制造用金属粉末材料及其制备技术 [J]. 工业技术创新. 2017, 4(4): 59-63.
Zhang F, Gao Z J, Ma T, et al. Metal powder materials for additive manufacturing and their preparation methods [J]. Industrial Technology Innovation. 2017, 4(4): 59-63.
张飞, 高正江, 马腾, 等. 增材制造用金属粉末材料及其制备技术 [J]. 工业技术创新. 2017, 4(4): 59-63.

【19】Le G M, Li Q, Dong X F, et al. Fabrication techniques of spherical-shaped metal powders suitable for additive manufacturing [J]. Rare Metal Materials and Engineering. 2017, 46(4): 1162-1168.
乐国敏, 李强, 董鲜峰, 等. 适用于金属增材制造的球形粉体制备技术 [J]. 稀有金属材料与工程. 2017, 46(4): 1162-1168.

【20】Miranda G, Araújo A, Bartolomeu F, et al. Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications [J]. Materials & Design. 2016, 108: 488-493.

【21】Dehaghani M T, Ahmadian M, Beni B H. Fabrication and characterization of porous Co-Cr-Mo/58S bioglass nano-composite by using NH4HCO3 as space-holder [J]. Materials & Design. 2015, 88: 406-413.Dehaghani M T, Ahmadian M, Beni B H. Fabrication and characterization of porous Co-Cr-Mo/58S bioglass nano-composite by using NH4HCO3 as space-holder [J]. Materials & Design. 2015, 88: 406-413.

【22】AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment [J]. Powder Technology. 2017, 309: 37-48.

【23】Yang Y W. Yuan F L, de Gao C, et al. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying [J]. Journal of the Mechanical Behavior of Biomedical Materials. 2018, 82: 51-60.

【24】Qin Y, Wen P, Voshage M, et al. Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties [J]. Materials & Design. 2019, 181: 107937.

【25】Marin E, Fusi S, Pressacco M, et al. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium [J]. Journal of the Mechanical Behavior of Biomedical Materials. 2010, 3(5): 373-381.

【26】Yang L, Wang F Y. Application of medical 3D printing porous tantalum in orthopedics [J]. Journal of Third Military Medical University. 2019, 41(19): 1859-1866.
杨柳, 王富友. 医学3D打印多孔钽在骨科的应用 [J]. 第三军医大学学报. 2019, 41(19): 1859-1866.

【27】Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys [J]. Bioactive Materials. 2020, 5(1): 44-54.

【28】Montani M, Demir A G, Mostaed E, et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing [J]. Rapid Prototyping Journal. 2017, 23(3): 514-523.

【29】Wen P, Qin Y, Chen Y, et al. Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification [J]. Journal of Materials Science& Technology. 2019, 35(2): 368-376.

【30】Wang X J, Xu S Q, Zhou S W, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review [J]. Biomaterials. 2016, 83: 127-141.

【31】Zadpoor A A. Bone tissue regeneration: the role of scaffold geometry [J]. Biomaterials Science. 2015, 3(2): 231-245.

【32】Hollander D A, von Walter M, Wirtz T, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming [J]. Biomaterials. 2006, 27(7): 955-963.

【33】Snis A, Lausmaa J, Thomsen P, et al. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human [J]. The Cientific World Journal. 2012, 11: 646417.

【34】Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging [J]. Science. 2019, 363(6429): 849-852.

【35】Khairallah S A, Anderson A, Rubenchik A M, et al. Simulation of the main physical processes in remote laser penetration with large laser spot size [J]. AIP Advances. 2015, 5(4): 047120.

【36】Demir A G, Previtali B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting [J]. Materials & Design. 2017, 119: 338-350.

【37】Martin A A, Calta N P, Khairallah S A, et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing [J]. Nature Communications. 2019, 10(1): 1987.

【38】Mukherjee T, Zuback J S, De A, et al. Printability of alloys for additive manufacturing [J]. Scientific Reports. 2016, 6(1): 19717.

【39】Takamichi II Da. Physical properties of liquid metal[M]. Beijing: Press of Science, 2006.
饭田孝道, [M]. 液态金属的物理性能. 北京: 科学出版社, 2006.

【40】Wen P, Jauer L, Voshage M, et al. Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants [J]. Journal of Materials Processing Technology. 2018, 258: 128-137.

【41】Zhao X L, Li S J, Zhang M, et al. Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Materials & Design. 2016, 95: 21-31.

【42】Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Materialia. 2015, 85: 74-84.

【43】Keist J S, Palmer T A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition [J]. Materials & Design. 2016, 106: 482-494.

【44】Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders [J]. Rapid Prototyping Journal. 2010, 16(6): 450-459.

【45】Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts [J]. Rapid Prototyping Journal. 2007, 13(4): 196-203.

【46】Schwab H, Palm F, Kühn U, et al. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting [J]. Materials & Design. 2016, 105: 75-80.

【47】Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Materialia. 2010, 58(9): 3303-3312.

【48】Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Materialia. 2016, 117: 371-392.

【49】Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: materials and applications [J]. Applied Physics Reviews. 2015, 2(4): 041101.

【50】1569[2020-06-01] . http:∥connection.ebscohost.com/c/articles/55675242/statistical-process-control-applied-additive-manufacturing-enables-series-production-orthopedic-implants. 2010.

【51】Xillo G. The world''''s first 3D printed total jaw reconstruction[M]. S.l.]: , 2011.

【52】Zhou M, Cheng Y, Zhou X C, et al. Biomedical titanium implants based on additive manufacture [J]. Scientia Sinica Technologica. 2016, 46(11): 1097-1115.
周梦, 成艳, 周晓晨, 等. 基于增材制造技术的钛合金医用植入物 [J]. 中国科学: 技术科学. 2016, 46(11): 1097-1115.

【53】Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review [J]. Progress in Materials Science. 2016, 83: 630-663.

【54】Liu J W, Sun Q D, Zhou C A, et al. Achieving Ti6Al4V alloys with both high strength and ductility via selective laser melting [J]. Materials Science and Engineering A. 2019, 766: 138319.

【55】Luo J P, Sun J F, Huang Y J, et al. Low-modulus biomedical Ti-30Nb-5Ta-3Zr additively manufactured by selective laser melting and its biocompatibility [J]. Materials Science and Engineering C. 2019, 97: 275-284.

【56】Attar H, Bermingham M J, Ehtemam-Haghighi S, et al. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application [J]. Materials Science and Engineering A. 2019, 760: 339-345.

【57】Zhao D L, Han C J, Li J J, et al. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting [J]. Materials Science and Engineering C. 2020, 111: 110784.

【58】Wang D W, Zhou Y H, Shen J, et al. Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility [J]. Materials Science and Engineering A. 2019, 762: 138078.

【59】Song C H, Zhang M K, Yang Y Q, et al. Morphology and properties of CoCrMo parts fabricated by selective laser melting [J]. Materials Science and Engineering A. 2018, 713: 206-213.

【60】Lu Y J, Wu S Q, Gan Y L, et al. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application [J]. Materials Science and Engineering C. 2015, 49: 517-525.

【61】Larimian T, Kannan M, Grzesiak D, et al. Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting [J]. Materials Science and Engineering A. 2020, 770: 138455.Larimian T, Kannan M, Grzesiak D, et al. Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting [J]. Materials Science and Engineering A. 2020, 770: 138455.

【62】Boes J, R?ttger A, Becker L, et al. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion-microstructure and properties [J]. Additive Manufacturing. 2019, 30: 100836.

【63】Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties [J]. Materials & Design. 2018, 155: 36-45.

【64】Shuai C J, Zhou Y Z, Lin X, et al. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application [J]. Journal of Materials Science: Materials in Medicine. 2016, 28(1): 1-8.Shuai C J, Zhou Y Z, Lin X, et al. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application [J]. Journal of Materials Science: Materials in Medicine. 2016, 28(1): 1-8.

【65】Gangireddy S, Gwalani B, Liu K M, et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy [J]. Additive Manufacturing. 2019, 26: 53-64.

【66】Wei K W, Zeng X Y, Wang Z M, et al. Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property [J]. Materials Science and Engineering A. 2019, 756: 226-236.

【67】Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc [J]. Acta Biomaterialia. 2020, 101: 609-623.

【68】Xiao Z N, Liu T T, Liao W H, et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment [J]. Chinese Journal of Lasers. 2017, 44(9): 0902001.
肖振楠, 刘婷婷, 廖文和, 等. 激光选区熔化成形TC4钛合金热处理后微观组织和力学性能 [J]. 中国激光. 2017, 44(9): 0902001.

【69】Baufeld B. Biest O V D, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties [J]. Materials & Design. 2010, 31: S106-S111.

【70】Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Materials Science and Engineering A. 2014, 616: 1-11.

【71】Carter D R, Hayes W C. The compressive behavior of bone as a two-phase porous structure [J]. The Journal of Bone & Joint Surgery. 1977, 59(7): 954-962.

【72】Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM) [J]. Journal of the Mechanical Behavior of Biomedical Materials. 2010, 3(3): 249-259.

【73】Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomaterialia. 2014, 10(10): 4537-4547.

【74】Hrabe N W, Heinl P, Flinn B, et al. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V) [J]. Journal of Biomedical Materials Research Part B. 2011, 99B(2): 313-320.

【75】Amin Yavari S. Wauthle R, van der Stok J, et al. Fatigue behavior of porous biomaterials manufactured using selective laser melting [J]. Materials Science and Engineering C. 2013, 33(8): 4849-4858.

【76】Ahmadi S M, Hedayati R, Li Y, et al. Fatigue performance of additively manufactured meta-biomaterials: the effects of topology and material type [J]. Acta Biomaterialia. 2018, 65: 292-304.

【77】Amin Yavari S, Ahmadi S M, Wauthle R, et al. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials [J]. Journal of the Mechanical Behavior of Biomedical Materials. 2015, 43: 91-100.

【78】Ahmadi S M, Kumar R, Borisov E V, et al. From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials [J]. Acta Biomaterialia. 2019, 83: 153-166.

【79】Ma T, Liu T T, Liao W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting [J]. Chinese Journal of Lasers. 2018, 45(11): 1102012.
马涛, 刘婷婷, 廖文和, 等. 激光选区熔化成形Ti-6Al-4V疲劳性能研究 [J]. 中国激光. 2018, 45(11): 1102012.

【80】Yin Y, Kang P, Xiao M Z, et al. Effect of heat treatment on microstructure and microhardness of CoCrW alloys processed by selctive laser melting [J]. Chinese Journal of Lasers. 2019, 46(10): 1002002.
尹燕, 康平, 肖梦智, 等. 热处理对选区激光熔化CoCrW合金组织及显微硬度的影响 [J]. 中国激光. 2019, 46(10): 1002002.

【81】Guo M, Zheng Y F. Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery [J]. Chinese Journal of Clinical and Basic Orthopaedic Research. 2013, 5(1): 47-55.
郭敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状 [J]. 中国骨科临床与基础研究杂志. 2013, 5(1): 47-55.
Guo M, Zheng Y F. Manufacture technique and clinical application of porous tantalum implant in orthopaedic surgery [J]. Chinese Journal of Clinical and Basic Orthopaedic Research. 2013, 5(1): 47-55.
郭敏, 郑玉峰. 多孔钽材料制备及其骨科植入物临床应用现状 [J]. 中国骨科临床与基础研究杂志. 2013, 5(1): 47-55.

【82】Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants [J]. Acta Biomaterialia. 2015, 14: 217-225.

【83】Thijs L. Montero Sistiaga M L, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum [J]. Acta Materialia. 2013, 61(12): 4657-4668.

【84】Witte F. The history of biodegradable magnesium implants: a review [J]. Acta Biomaterialia. 2010, 6(5): 1680-1692.

【85】Zhao D W, Witte F, Lu F Q, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective [J]. Biomaterials. 2017, 112: 287-302.

【86】Zhang Y F, Xu J, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nature Medicine. 2016, 22(10): 1160.

【87】Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium [J]. Acta Biomaterialia. 2018, 67: 378-392.

【88】Pawlak A, Chlebus E. Process parameter optimization of laser micrometallurgy of AZ31 alloy [J]. Interdisciplinary Journal of Engineering Sciences. 2015, 3(1): 10-15.

【89】Gieseke M, Tandon R, Kiesow T, et al. 2020-06-01]. https:∥www.researchgate.net/publication/304398182_Selektives_Laserstrahlschmelzen_von_ElektronR_MAP_43_Magnesiumpulver_Selective_Laser_Melting_of_ElektronR_MAP_43_Magnesium_ . Powder. 2016.

【90】Lucas J, Bastian J, Maximilian V, et al. Selective laser melting of magnesium alloys [J]. European Cells & Materials. 2015, 30(S3): 1.

【91】Yang Y W, Wu P, Lin X, et al. System development, formability quality and microstructure evolution of selective laser-melted magnesium [J]. Virtual and Physical Prototyping. 2016, 11(3): 173-181.

【92】Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metallurgica Sinica. 2017, 53(10): 1317-1322.
王鲁宁, 孟瑶, 刘丽君, 等. 可降解锌基生物材料的研究进展 [J]. 金属学报. 2017, 53(10): 1317-1322.

【93】Li G N, Yang H T, Zheng Y F, et al. Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility [J]. Acta Biomaterialia. 2019, 97: 23-45.

【94】Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review [J]. Acta Biomaterialia. 2019, 87: 1-40.

【95】Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nature Communications. 2020, 11(1): 401.Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nature Communications. 2020, 11(1): 401.

【96】Demir A G, Monguzzi L, Previtali B. Selective laser melting of pure Zn with high density for biodegradable implant manufacturing [J]. Additive Manufacturing. 2017, 15: 20-28.

【97】Grasso M, Demir A G, Previtali B, et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume [J]. Robotics and Computer-Integrated Manufacturing. 2018, 49: 229-239.

【98】Wei K W, Wang Z M, Zeng X Y. Element loss of AZ91D magnesium alloy during selective laser melting process [J]. Acta Metallurgica Sinica. 2016, 52(2): 184-190.
魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损 [J]. 金属学报. 2016, 52(2): 184-190.

【99】Zumdick N A, Jauer L, Kersting L C, et al. Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 [J]. Materials Characterization. 2019, 147: 384-397.

【100】Wei K W, Wang Z M, Zeng X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components [J]. Materials Letters. 2015, 156: 187-190.

【101】Klassen A, Forster V E, K?rner C. A multi-component evaporation model for beam melting processes [J]. Modelling and Simulation in Materials Science and Engineering. 2017, 25(2): 025003.

【102】Ladewig A, Schlick G, Fisser M, et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process [J]. Additive Manufacturing. 2016, 10: 1-9.

【103】Ferrar B, Mullen L, Jones E, et al. Gas flow effects on selective laser melting (SLM) manufacturing performance [J]. Journal of Materials Processing Technology. 2012, 212(2): 355-364.Ferrar B, Mullen L, Jones E, et al. Gas flow effects on selective laser melting (SLM) manufacturing performance [J]. Journal of Materials Processing Technology. 2012, 212(2): 355-364.

【104】Chen Y, Wen P, Voshage M, et al. Laser additive manufacturing of Zn metal parts for biodegradable implants: effect of gas flow on evaporation and formation quality [J]. Journal of Laser Applications. 2019, 31(2): 022304.

【105】B?r F, Berger L, Jauer L, et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis [J]. Acta Biomaterialia. 2019, 98: 36-49.

【106】Kubásek J, Vojtěch D, Jablonská E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys [J]. Materials Science and Engineering C. 2016, 58: 24-35.

【107】Li H F, Xie X H, Zheng Y F, et al. Corrigendum: development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr [J]. Scientific Reports. 2015, 5(1): 12190.Li H F, Xie X H, Zheng Y F, et al. Corrigendum: development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr [J]. Scientific Reports. 2015, 5(1): 12190.

【108】Li Y, Lietaert K, Li W, et al. Corrosion fatigue behavior of additively manufactured biodegradable porous iron [J]. Corrosion Science. 2019, 156: 106-116.

【109】Li Y, Jahr H, Zhang X Y, et al. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium [J]. Additive Manufacturing. 2019, 28: 299-311.

【110】Guo M, Li X. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications [J]. Materials Science and Engineering C. 2016, 58: 1177-1181.

【111】Yang H T, Qu X H, Lin W J, et al. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications [J]. Acta Biomaterialia. 2018, 71: 200-214.Yang H T, Qu X H, Lin W J, et al. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications [J]. Acta Biomaterialia. 2018, 71: 200-214.

【112】Lin T C, Cao C, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing Nature Communications[J]. 0, 10(1): 4124.

引用该论文

Yin Bangzhao,Qin Yu,Wen Peng,Zheng Yufeng,Tian Yun. Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants[J]. Chinese Journal of Lasers, 2020, 47(11): 1100001

尹浜兆,秦瑜,温鹏,郑玉峰,田耘. 激光粉末床熔融制备金属骨植入物[J]. 中国激光, 2020, 47(11): 1100001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF