首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1007001--1)

基于光声温度精准调控的光热治疗方法

Photothermal Therapy Method Based on Precise Regulation of Photoacoustic Temperature

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光热治疗是一种非侵入式、靶向性的新型治疗技术,但现有的光热治疗技术不能实时监测靶区的温度分布,且开环的激光控制方式不仅增大了治疗难度,也会对病灶周边的正常组织造成不可逆损伤。为此,提出了一种基于光声温度精准调控的光热治疗方法。研究了基于光声图像的温度成像算法,提出了光声温度敏感因子的概念,设计了基于光声温度敏感因子的闭环温度控制算法,最后搭建了一套基于光声温度精准调控的新型光热治疗系统,并进行了仿体实验。实验结果表明:基于光声温度精准调控的光热治疗方法可实现靶区温度的非接触式精准测量与控制,系统调节时间在10 s以内且温度控制均方根误差在0.7 ℃以内。基于光声温度精准调控的光热治疗方法可以作为一种更精准、高效的辅助手段应用于光热治疗领域。

Abstract

Photothermal therapy is a non-invasive, targeted, and new technology, but the existing photothermal therapy technology cannot monitor the temperature distribution of the target area in real time, and the open-loop laser control method not only increases the difficulty of treatment but also causes irreversible damage to normal tissues around patient''s lesion. This paper proposes a photothermal therapy method based on precise control of photoacoustic temperature. The proposed temperature imaging algorithm was studied, the concept of photoacoustic temperature sensitivity factor was proposed and a closed-loop temperature control algorithm was designed based on the factor. Finally, a new photothermal treatment system was designed based on precise control of photoacoustic temperature, and phantom experiments were conducted. The experimental results show that the photothermal therapy method based on the precise control of photoacoustic temperature can realize the non-contact accurate measurement and control function of the target zone temperature. The system adjustment time is within 10 s and the temperature control steady-state error is within 0.7 ℃. Additionally, the results show that the photothermal therapy method based on the precise control of photoacoustic temperature can be used as a more accurate and efficient auxiliary method in the field of photothermal therapy.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:R318.51

DOI:10.3788/CJL202047.1007001

所属栏目:生物医学光子学与激光医学

基金项目:国家重点研发计划、国家自然科学基金、山东省自然科学基金、山东省重点研发计划;

收稿日期:2020-04-02

修改稿日期:2020-05-28

网络出版日期:2020-10-01

作者单位    点击查看

马一鸣:哈尔滨工业大学(威海)信息科学与工程学院, 山东 威海 264209
马立勇:哈尔滨工业大学(威海)信息科学与工程学院, 山东 威海 264209哈尔滨工业大学航天学院, 黑龙江 哈尔滨 150000
秦泽政:哈尔滨工业大学(威海)信息科学与工程学院, 山东 威海 264209
孙明健:哈尔滨工业大学(威海)信息科学与工程学院, 山东 威海 264209哈尔滨工业大学航天学院, 黑龙江 哈尔滨 150000

联系人作者:孙明健(sunmingjian@hit.edu.cn)

备注:国家重点研发计划、国家自然科学基金、山东省自然科学基金、山东省重点研发计划;

【1】Shao P, Cox B, Zemp R J. Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography [J]. Applied Optics. 2011, 50(19): 3145-3154.

【2】Larin K V, Larina I V, Motamedi M, et al. Optoacoustic laser monitoring of cooling and freezing of tissues [J]. Quantum Electronics. 2002, 32(11): 953-958.Larin K V, Larina I V, Motamedi M, et al. Optoacoustic laser monitoring of cooling and freezing of tissues [J]. Quantum Electronics. 2002, 32(11): 953-958.

【3】Li C, Wang K H, Huang J. Effects of indocyanine green and methylene blue on tensile strength and thermal damage of laser biological tissue soldering [J]. Chinese Journal of Lasers. 2019, 46(12): 1207002.
李聪, 王克鸿, 黄俊. 吲哚菁绿与亚甲基蓝对生物组织激光钎焊强度及热损伤的影响 [J]. 中国激光. 2019, 46(12): 1207002.

【4】Wang L, Tu P, Xu M E. Real-time monitoring of optical-thermal response of tissue to laser irradiation [J]. Chinese Journal of Lasers. 2015, 42(1): 0104001.
王玲, 涂沛, 徐铭恩. 激光辐照下组织光热响应的实时监测研究 [J]. 中国激光. 2015, 42(1): 0104001.

【5】Liang G H, Xing D. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor [J]. Chinese Journal of Lasers. 2018, 45(2): 0207020.
梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展 [J]. 中国激光. 2018, 45(2): 0207020.

【6】Ma D X, Wang J C, Chen Z S, et al. Simplified calibration method for radiation temperature measurement system with wide dynamic range [J]. Acta Optica Sinica. 2019, 39(6): 0612003.
马冬晓, 汪家春, 陈宗胜, 等. 宽动态范围辐射测温系统的简化定标方法 [J]. 光学学报. 2019, 39(6): 0612003.

【7】Xiao H, Yang Z F, Zhang L, et al. Effect of temperature on near-infrared spectrum detection of cement raw meal and compensation method [J]. Chinese Journal of Lasers. 2020, 47(1): 0111001.
肖航, 杨振发, 张雷, 等. 温度对水泥生料近红外光谱检测的影响及补偿方法 [J]. 中国激光. 2020, 47(1): 0111001.

【8】Nienhaus K, Nienhaus G U. Ligand dynamics in heme proteins observed by Fourier transform infrared-temperature derivative spectroscopy [J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2011, 1814(8): 1030-1041.

【9】Tu B H, Hong J, Yao P P, et al. Temperature-correction method for directional polarimetric camera [J]. Chinese Journal of Lasers. 2019, 46(10): 1010002.
涂碧海, 洪津, 姚萍萍, 等. 多角度偏振成像仪温度校正方法 [J]. 中国激光. 2019, 46(10): 1010002.

【10】Hwang O, Lee M C, Weng W B, et al. Development of novel ultrasonic temperature measurement technology for combustion gas as a potential indicator of combustion instability diagnostics [J]. Applied Thermal Engineering. 2019, 159: 113905.

【11】Shen G F, Chen Y Z, Ren G X. An improved tumour temperature measurement and control method for superficial tumour ultrasound hyperthermia therapeutic system [J]. Journal of Physics: Conference Series. 2006, 48: 653-657.

【12】Wyatt C, Soher B, Maccarini P, et al. Hyperthermia MRI temperature measurement: evaluation of measurement stabilisation strategies for extremity and breast tumours [J]. International Journal of Hyperthermia. 2009, 25(6): 422-433.

【13】Feng X H, Gao F, Zheng Y J. Photoacoustic-based-close-loop temperature control for nanoparticle hyperthermia [J]. IEEE Transactions on Biomedical Engineering. 2015, 62(7): 1728-1737.

【14】Petrova E, Liopo A, Oraevsky A A, et al. Temperature-dependent optoacoustic response and transient through zero Grüneisen parameter in optically contrasted media [J]. Photoacoustics. 2017, 7: 36-46.

【15】Xu M H, Wang L V. Photoacoustic imaging in biomedicine [J]. Review of Scientific Instruments. 2006, 77(4): 041101.

【16】Upputuri P K, Das D, Maheshwari M, et al. Real-time monitoring of temperature using a pulsed laser-diode-based photoacoustic system [J]. Optics Letters. 2020, 45(3): 718-721.

【17】Alaeian M. Orlande H R B, Lamien B. Application of the photoacoustic technique for temperature measurements during hyperthermia [J]. Inverse Problems in Science and Engineering. 2019, 27(12): 1651-1671.

【18】Larina I V, Larin K V, Esenaliev R O. Real-time optoacoustic monitoring of temperature in tissues [J]. Journal of Physics D. 2005, 38(15): 2633-2639.

【19】Pramanik M, Wang L V. Thermoacoustic and photoacoustic sensing of temperature [J]. Journal of Biomedical Optics. 2009, 14(5): 054024.

【20】Gao L, Wang L D, Li C Y, et al. Single-cell photoacoustic thermometry [J]. Journal of Biomedical Optics. 2013, 18(2): 026003.

【21】Liao Y, Jian X H, Cui Y Y, et al. Photoacoustic temperature measurement based on dual-wavelength method [J]. Acta Physica Sinica. 2017, 66(11): 117802.
廖宇, 简小华, 崔崤峣, 等. 一种基于双波长的光声测温技术 [J]. 物理学报. 2017, 66(11): 117802.

【22】Wang J, Lu H B, Li T F, et al. An alternative solution to the nonuniform noise propagation problem in fan-beam FBP image reconstruction [J]. Medical Physics. 2005, 32(11): 3389-3394.

引用该论文

Ma Yiming,Ma Liyong,Qin Zezheng,Sun Mingjian. Photothermal Therapy Method Based on Precise Regulation of Photoacoustic Temperature[J]. Chinese Journal of Lasers, 2020, 47(10): 1007001

马一鸣,马立勇,秦泽政,孙明健. 基于光声温度精准调控的光热治疗方法[J]. 中国激光, 2020, 47(10): 1007001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF