首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1828003--1)

基于点源靶标的航天遥感几何定标与定位精度提升方法

Point-Source-Target-Based Method for Space Remote Sensing Geometric Calibration and Positioning Accuracy Improvement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

全球测图与境外目标定位等任务对航天遥感几何定标与定位精度的要求越来越高。当前像点量测误差与地面控制点精度不匹配,影响了航天传感器定标结果的可靠性。点源靶标在航天影像中具有良好的几何形态,能够为几何定标任务提供精确的像点坐标。对模拟点源靶标影像进行了解算,得到其像点误差在0.04 pixel以内,均方根误差仅为0.01 pixel,优于当前测量软件及人工选点精度。检验了不同像点测量误差对定标和定位结果的影响,结果显示,以点源靶标作为控制点时,定标参数的解算结果和定位精度均优于使用传统控制点的结果;在缺少控制点的情况下,增加两个点源靶标能够使定位误差降至分米量级。点源靶标能够有效提高几何定标与定位结果的精度,并有潜力发展成为新一代几何定标工具。

Abstract

Tasks such as global mapping and overseas target positioning have the higher and higher requirements for space remote sensing geometric calibration and positioning accuracy. The current measurement error of the image pixel coordinates does not match the accuracy of the ground control points (GCP), which limits the reliability of the calibration results of the space sensors. The point source target has a good geometry in the aerospace image and can provide precise pixel coordinates for the geometric calibration task. In this paper, the pixel coordinates of the simulated point source images are solved, and the errors the pixel coordinates are below 0.04 pixel and the root mean square error is only 0.01 pixel, superior to those by the current measurement software and the manual selection. In addition, the effect of pixel measurement error on the calibration and positioning results is examined. The results show that the use of point source target as GCP can make the calibration parameter and positioning accuracy better than those using the traditional GCPs. In the absence of GCPs, adding two point source targets can reduce the positioning error to the decimeter level. The point source target can effectively improve the accuracy of geometric calibration and positioning results and has the potential to develop into a new generation of geometric calibration tools.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:P236

DOI:10.3788/AOS202040.1828003

所属栏目:遥感与传感器

基金项目:国家自然科学基金;

收稿日期:2020-04-26

修改稿日期:2020-06-09

网络出版日期:2020-09-01

作者单位    点击查看

李凯:军事科学院系统工程研究院后勤科学与技术研究所, 北京 100071战略支援部队信息工程大学地理空间信息学院, 河南 郑州 450001
张永生:战略支援部队信息工程大学地理空间信息学院, 河南 郑州 450001
孟伟灿:北京跟踪与通信技术研究所, 北京 100094
杨伟铭:军事科学院系统工程研究院后勤科学与技术研究所, 北京 100071

联系人作者:李凯(likai_rs@163.com)

备注:国家自然科学基金;

【1】Pi Y D, Xie B R, Yang B, et al. On-orbit geometric calibration of linear push-broom optical satellite only using sparse GCPs [J]. Acta Geodaetica et Cartographica Sinica. 2019, 48(2): 216-225.
皮英冬, 谢宝蓉, 杨博, 等. 利用稀少控制点的线阵推扫式光学卫星在轨几何定标方法 [J]. 测绘学报. 2019, 48(2): 216-225.

【2】Cao J S, Yuan X X, Gong J Y. In-orbit geometric calibration and validation of ZY-3 three-line cameras based on CCD-detector look angles [J]. Photogrammetric Record. 2015, 30(150): 211-226.

【3】Yuan X X. Calibration of angular systematic errors for high resolution satellite imagery [J]. Acta Geodaetica et Cartographica Sinica. 2012, 41(3): 385-392.
袁修孝, 余翔. 高分辨率卫星遥感影像姿态角系统误差检校 [J]. 测绘学报. 2012, 41(3): 385-392.

【4】Li K, Zhang Y S, Yu Y, et al. Pixel extraction accuracy of point source image and its impact on geometric calibration [J]. Journal of China University of Mining & Technology. 2019, 48(1): 213-220.
李凯, 张永生, 于英, 等. 点源像点提取精度及其对几何定标影响分析 [J]. 中国矿业大学学报. 2019, 48(1): 213-220.

【5】Fan D Z, Liu C B, Wang T, et al. Building and validation of rigorous geometric model of ALOS PRISM imagery [J]. Acta Geodaetica et Cartographica Sinica. 2011, 40(5): 569-574.
范大昭, 刘楚斌, 王涛, 等. ALOS卫星PRISM影像严格几何模型的构建与验证 [J]. 测绘学报. 2011, 40(5): 569-574.

【6】Wang M, Cheng Y F, Chang X L, et al. On-orbit geometric calibration and geometric quality assessment for the high-resolution geostationary optical satellite GaoFen4 [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2017, 125: 63-77.

【7】Zhang Y J, Zheng M T, Xiong J X, et al. On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets [J]. IEEE Transactions on Geoscience and Remote Sensing. 2014, 52(1): 224-234.

【8】Li D R, Wang M. On-orbit geometric calibration and accuracy assessment of ZY-3 [J]. Spacecraft Recovery & Remote Sensing. 2012, 33(3): 1-6.
李德仁, 王密. “资源三号”卫星在轨几何定标及精度评估 [J]. 航天返回与遥感. 2012, 33(3): 1-6.

【9】Pan H B, Zhang G, Tang X M, et al. Accuracy analysis and verification of ZY-3 products [J]. Acta Geodaetica et Cartographica Sinica. 2013, 42(5): 738-744, 751.
潘红播, 张过, 唐新明, 等. 资源三号测绘卫星影像产品精度分析与验证 [J]. 测绘学报. 2013, 42(5): 738-744, 751.

【10】Zhang C M, Gong Z H, Huang Y. Performance evaluation and improvement of several feature point detectors [J]. Journal of Geomatics Science and Technology. 2008, 25(3): 231-234.
张春美, 龚志辉, 黄艳. 几种特征点提取算法的性能评估及改进 [J]. 测绘科学技术学报. 2008, 25(3): 231-234.

【11】Rauchmiller R F Jr, Schowengerdt R A. Measurement of the landsat thematic mapper modulation transfer function using an array of point sources [J]. Optical Engineering. 1988, 27(4): 334-343.

【12】Leger D, Duffaut J, Robinet F. MTF measurement using spotlight . [C]∥Proceedings of IGARSS''''94-1994 IEEE International Geoscience and Remote Sensing Symposium, August 8-12, 1994, Pasadena, CA, USA. New York: IEEE. 1994, 2010-2012.

【13】Rangaswamy M K. Quickbird II: two-dimensional on-orbit modulation transfer function analysis using convex mirror array [D]. South Dakota:South Dakota State University. 2003, 72-90.

【14】Schiller S J, Silny J. The specular array radiometric calibration (SPARC) method: a new approach for absolute vicarious calibration in the solar reflective spectrum [J]. Proceedings of SPIE. 2010, 7813: 78130E.

【15】Jemec J, Pernu? F, Likar B, et al. 2D sub-pixel point spread function measurement using a virtual point-like source [J]. International Journal of Computer Vision. 2017, 121(3): 391-402.

【16】Xu W W, Zhang L M, Si X L, et al. On-orbit modulation transfer function detection of high resolution optical satellite sensor based on reflected point sources [J]. Acta Optica Sinica. 2017, 37(7): 0728001.
徐伟伟, 张黎明, 司孝龙, 等. 基于反射点源的高分辨率光学卫星传感器在轨调制传递函数检测 [J]. 光学学报. 2017, 37(7): 0728001.

【17】Tang S J, Guo X S, Zhou Z F, et al. Modified systematic error compensation algorithm for star centroid sub-pixel detection [J]. Infrared and Laser Engineering. 2013, 42(6): 1502-1507.
唐圣金, 郭晓松, 周召发, 等. 星点亚像元定位中系统误差的改进补偿方法 [J]. 红外与激光工程. 2013, 42(6): 1502-1507.

【18】Cao Y, Li B Q, Li H T, et al. High-accuracy star sensor centroid algorithm based on star image resampling [J]. Acta Optica Sinica. 2019, 39(7): 0712003.
曹阳, 李保权, 李海涛, 等. 基于星点像重采样的星敏感器高精度质心算法 [J]. 光学学报. 2019, 39(7): 0712003.

【19】Li Y L, He H Y, Zhang F, et al. Space multi-target star extraction algorithm based on line data scanning [J]. Spacecraft Recovery & Remote Sensing. 2019, 40(2): 79-88.
李寅龙, 何海燕, 张凤, 等. 基于行数据扫描的星空多目标星点提取方法 [J]. 航天返回与遥感. 2019, 40(2): 79-88.

【20】Zhang B, Zerubia J, Olivomarin J. Gaussian approximations of fluorescence microscope point-spread function models [J]. Applied Optics. 2007, 46(10): 1819-1829.

【21】Qin F Q, Min J, Guo H R. A blind image restoration method based on PSF estimation . [C]∥2009 WRI World Congress on Software Engineering , May 19-21,2009, Xiamen, China. New York: IEEE. 2009, 2: 10982158.

【22】Yang L H, Ren J Y. Remote sensing image restoration using estimated point spread function . [C]∥2010 International Conference on Information, Networking and Automation (ICINA), October 18-19, 2010, Kunming, China. New York: IEEE. 2010, 11654942.

【23】Silny J F, Schiller S J. Method. -01-31 [P]. system for vicarious spatial characterization of a remote image sensor: US20130027553. 2013.

【24】Xu C, Liu Z L, Hou G L. Simulation of the impact of a sensor''''s PSF on mixed pixel decomposition: 1. nonuniformity effect [J]. Remote Sensing. 2016, 8(5): 437.

【25】Storey J C. Landsat 7 on-orbit modulation transfer function estimation [J]. Proceedings of SPIE. 2001, 4540: 50-61.

【26】Fan C, Li G D, Wu C Y, et al. High accurate estimation of point spread function based on improved recon-struction of slant edge [J]. Acta Geodaetica et Cartographica Sinica. 2015, 44(11): 1219-1226, 1254.
范冲, 李冠达, 伍超云, 等. 点扩散函数的改进倾斜刃边重建的高精度估计 [J]. 测绘学报. 2015, 44(11): 1219-1226, 1254.

【27】Gao H T, Liu W, He H Y, et al. Static PSF of TDI-CCD measurement with multi-phase-knife method [J]. Opto-Electronic Engineering. 2016, 43(6): 13-18.
高慧婷, 刘薇, 何红艳, 等. TDI-CCD静态点扩散函数多相位刃边测量 [J]. 光电工程. 2016, 43(6): 13-18.

【28】Liu C B. Positioning accuracy optimization and reliability improvement of surveying satellite [D]. Zhengzhou: PLA Information Engineering University. 2015, 55-61.
刘楚斌. 测绘卫星定位精度优化与可靠性提升技术 [D]. 郑州: 解放军信息工程大学. 2015, 55-61.

【29】Xu W W, Zhang L M, Chen H Y, et al. In-flight radiometric calibration of high resolution optical satellite sensor using reflected point sources [J]. Acta Optica Sinica. 2017, 37(3): 0328001.
徐伟伟, 张黎明, 陈洪耀, 等. 基于反射点源的高分辨率光学卫星传感器在轨辐射定标方法 [J]. 光学学报. 2017, 37(3): 0328001.

引用该论文

Li Kai,Zhang Yongsheng,Meng Weican,Yang Weiming. Point-Source-Target-Based Method for Space Remote Sensing Geometric Calibration and Positioning Accuracy Improvement[J]. Acta Optica Sinica, 2020, 40(18): 1828003

李凯,张永生,孟伟灿,杨伟铭. 基于点源靶标的航天遥感几何定标与定位精度提升方法[J]. 光学学报, 2020, 40(18): 1828003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF