首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1017001--1)

基于改进半阈值法的生物发光断层成像仿真

Simulation of Bioluminescence Tomography Based on Improved Half Threshold Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

生物发光断层成像(BLT)是一种灵敏度高、成本低的光学分子成像模态[1]。BLT通过生物体表面获取有限测量信息来估计内部生物自发荧光光源的分布,实现在分子细胞水平观测生物体的各种生物学过程。这一在体无创成像模态已成为分子成像领域的研究热点,并在恶性肿瘤早期检测及治疗、药物开发、疗效评估等预临床医学研究中表现出巨大的应用潜力[1-3]。但BLT光源重建是一个典型的不适定逆问题,而且近红外光在生物组织中传播时要经历多次散射和吸收,增加了光源重建的难度[4],因此BLT的广泛应用,仍依赖光源重建算法的不断发展。

Abstract

We propose a percentile half threshold pursuit algorithm (PHTPA) for applying optical molecular imaging modality to bioluminescence tomography (BLT). The BLT reconstruction problem is modeled as an L1/2 regularization problem that can be solved by combining the subspace pursuit (SP) and percentile threshold methods based on the iterative half threshold algorithm (HTA). Several simulations are run on the digital mouse model to evaluate the validity and astringency of PHTPA. The simulation results demonstrate that PHTPA produces more accurate reconstruction results in different source settings when compared with the original HTA and iterative reweighted algorithms.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1017001

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金、陕西省国际科技合作与交流计划项目;

收稿日期:2019-03-25

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

方子叶:陕西师范大学物理与信息技术学院, 陕西 西安 710119
余景景:陕西师范大学物理与信息技术学院, 陕西 西安 710119

联系人作者:余景景(yujj@snnu.edu.cn)

备注:国家自然科学基金、陕西省国际科技合作与交流计划项目;

【1】Qin C H, Feng J C, Zhu S P et al. Recent advances in bioluminescence tomography: methodology and system as well as application. Laser & Photonics Reviews. 8(1), 94-114(2014).

【2】Yu J J, Zhang B, Iordachita I I et al. Systematic study of target localization for bioluminescence tomography guided radiation therapy. Medical Physics. 43(5), 2619-2629(2016).

【3】Yu J J, Tian J, Wang H Y et al. Bioluminescence tomography based on iterative support detection. Acta Optica Sinica. 37(7), (2017).
余景景, 田晶, 王海玉 等. 基于迭代支撑检测的生物发光断层成像. 光学学报. 37(7), (2017).

【4】Cong W X, Wang G, Kumar D et al. Practical reconstruction method for bioluminescence tomography. Optics Express. 13(18), 6756-6771(2005).

【5】Yu J J, Liu F, He X W et al. Adaptive parameter selection for Tikhonov regularization in Bioluminescence tomography. [C]∥2010 3rd International Conference on Biomedical Engineering and Informatics, October 16-18, 2010, Yantai, China. New York: IEEE. 86-90(2010).

【6】Yu J J, Liu F, Wu J et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization. IEEE Transactions on Biomedical Engineering. 57(10), 2583-2586(2010).

【7】He X W, Liang J M, Wang X R et al. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Optics Express. 18(24), 24825-24841(2010).

【8】Jin C, Guo H B, Hou Y Q et al. Bioluminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation. Acta Optica Sinica. 34(6), (2014).
金晨, 郭红波, 侯榆青 等. 基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像. 光学学报. 34(6), (2014).

【9】Chen X L, Yang D F, Zhang Q T et al. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography. Journal of Applied Physics. 115(18), (2014).

【10】Xu Z B, Guo H L, Wang Y et al. Representative of L1/2 regularization among Lq (0

【11】Yu J J, Li Q Y and Wang H Y. Source reconstruction for bioluminescence tomography via L1/2 regularization. Journal of Innovative Optical Health Sciences. 11(2), (2018).

【12】Daubechies I. DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics. 63(1), 1-38(2010).

【13】Xu Z B, Chang X Y, Xu F M et al. L1/2 regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems. 23(7), 1013-1027(2012).

【14】Zhu D W, Zhao Y, Baikejiang R et al. Comparison of regularization methods in fluorescence molecular tomography. Photonics. 1(2), 95-109(2014).

【15】Chen Y K, Chen K L, Shi P D et al. Irregular seismic data reconstruction using a percentile-half-thresholding algorithm. Journal of Geophysics and Engineering. 11(6), (2014).

【16】Liang Y, Liu C, Luan X Z et al. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification. BMC Bioinformatics. 14, (2013).

【17】Dai W and Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory. 55(5), 2230-2249(2009).

【18】Ma Y, Zhang Z J, Chen W et al. An micro-motion target imaging algorithm based on compressed sensing theory. Journal of Projectiles, Rockets, Missiles and Guidance. 35(3), 170-174(2015).
马赢, 张智军, 陈稳 等. 基于压缩感知理论的微动目标成像算法. 弹箭与制导学报. 35(3), 170-174(2015).

【19】Zhu Y W, Zhao Y J and Sun B. A modified sparsity adaptive matching pursuit algorithm. Signal Processing. 28(1), 80-86(2012).
朱延万, 赵拥军, 孙兵. 一种改进的稀疏度自适应匹配追踪算法. 信号处理. 28(1), 80-86(2012).

【20】He X L, Yu J J, Wang X D et al. Half thresholding pursuit algorithm for fluorescence molecular tomography. IEEE Transactions on Biomedical Engineering. 66(5), 1468-1476(2019).

【21】Dogdas B, Stout D, Chatziioannou A F et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Physics in Medicine & Biology. 52(3), 577-587(2007).

引用该论文

Ziye Fang,Jingjing Yu. Simulation of Bioluminescence Tomography Based on Improved Half Threshold Algorithm[J]. Acta Optica Sinica, 2019, 39(10): 1017001

方子叶,余景景. 基于改进半阈值法的生物发光断层成像仿真[J]. 光学学报, 2019, 39(10): 1017001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF