首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1104003--1)

金属箔材弹性常数的激光超声测量方法

Measurement of Elastic Constants of Metal Foils by Laser Ultrasonic Method

陈龙   刘星   詹超   李阳  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

弹性常数是描述金属箔材力学性能的重要参数。为了准确地测量出金属箔材的弹性常数,提出了一种基于激光超声技术的无损检测方法。首先,采用数值方法求解弹性模量计算的逆问题;然后,采用直接耦合的有限元方法,分别计算了脉冲激光在20 μm厚的镁锂合金、304不锈钢以及6061铝合金三种箔材上激励出的超声场,将模拟得到的兰姆波速度代入数值计算程序,得到了弹性模量及泊松比的计算值,并将该计算值与有限元模型设定值进行对比;最后,结合铝合金箔材的实验测量,验证了数值求解逆问题方法的有效性。结果表明:利用所提出的数值计算方法可精确地得到箔材的弹性模量及泊松比。所得结果为进一步使用弹性常数描述金属箔材的力学性能提供了参考。

Abstract

Elastic constants are important parameters to describe the mechanical properties of metal foils. To accurately measure the elastic constants of metal foils, a nondestructive testing method is proposed based on laser ultrasonic technology. First, the inverse problem of elastic modulus calculation is solved numerically. Second, the ultrasonic fields excited by a pulse laser on 20 μm thick foils of Mg-Li alloy, 304 stainless steel and 6061 aluminum alloy are calculated by the direct coupling finite element method. The simulated Lamb wave speed is brought into the numerical calculation program to get the calculation values of elastic modulus and Poisson''s ratio which are subsequently compared with the model specifications. Finally, the effectiveness of the numerical method for inverse problems is verified by the experimental measurement of aluminum alloy foils. The results show that the elastic modulus and Poisson''s ratio of foils can be accurately obtained by the numerical method. These results provide a certain reference for evaluating the mechanical properties of metal foils through the measurement of elastic constants.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TH142

DOI:10.3788/CJL202047.1104003

所属栏目:测量与计量

基金项目:国家自然科学基金、河南省重点研发与推广专项、河南省高等学校重点科研项目、广东省特检院2017年度院级立项科技项目;

收稿日期:2020-05-09

修改稿日期:2020-07-02

网络出版日期:2020-11-01

作者单位    点击查看

陈龙:郑州大学机械与动力工程学院, 河南 郑州 450001
刘星:郑州大学机械与动力工程学院, 河南 郑州 450001
詹超:广东省特种设备检测研究院珠海检测院, 广东 珠海 519002
李阳:郑州大学机械与动力工程学院, 河南 郑州 450001

联系人作者:李阳(yangli@zzu.edu.cn)

备注:国家自然科学基金、河南省重点研发与推广专项、河南省高等学校重点科研项目、广东省特检院2017年度院级立项科技项目;

【1】Li S M. Mechanical fatigue and reliability design[M]. Beijing: Science Press, 2006.
李舜酩. 机械疲劳与可靠性设计[M]. 北京: 科学出版社, 2006.

【2】Zhang G D, Su B, Wang H, et al. Effect of elastic modulus on low cycle fatigue performance parameters [J]. Journal of Aeronautical power. 2005, 20(5): 768-771.
张国栋, 苏彬, 王泓, 等. 弹性模量对低周疲劳性能参数的影响 [J]. 航空动力学报. 2005, 20(5): 768-771.
Zhang G D, Su B, Wang H, et al. Effect of elastic modulus on low cycle fatigue performance parameters [J]. Journal of Aeronautical power. 2005, 20(5): 768-771.
张国栋, 苏彬, 王泓, 等. 弹性模量对低周疲劳性能参数的影响 [J]. 航空动力学报. 2005, 20(5): 768-771.

【3】Wang Y F, Wu X Y, Pan Z Y, et al. Effect of elastic modulus on the VIV-induced fatigue damage in deep sea risers [J]. Journal of Ship Mechanics. 2007, 11(6): 867-878.
王一飞, 吴晓源, 潘志远, 等. 弹性模量对深海立管涡激振动疲劳损伤的影响 [J]. 船舶力学. 2007, 11(6): 867-878.

【4】Meng B, Wang W H, Zhang Y Y, et al. Size effect on plastic anisotropy in microscale deformation of metal foil [J]. Journal of Materials Processing Technology. 2019, 271: 46-61.

【5】Shimizu T, Ogawa M, Yang M, et al. Plastic anisotropy of ultra-thin rolled phosphor bronze foils and its thickness strain evolution in micro-deep drawing [J]. Materials & Design. 2014, 56: 604-612.

【6】Zhan Y, Xue J C, Liu C S. Numerical simulation of laser ultrasonic elastic constant measurement based on Abaqus [J]. Chinese Journal of Lasers. 2015, 42(5): 0508002.
战宇, 薛俊川, 刘常升. 激光超声测量弹性常数的Abaqus数值模拟 [J]. 中国激光. 2015, 42(5): 0508002.

【7】Li X X, Zhao J F, Pan Y D. On the measurement method of material constants based on laser ultrasonic field testing system [J]. Journal of Experimental Mechanics. 2016, 31(3): 352-360.
李茜茜, 赵金峰, 潘永东. 基于激光超声场检测的材料常数测量方法 [J]. 实验力学. 2016, 31(3): 352-360.

【8】Dong L M, Ni C Y, Shen Z H, et al. Determination of elastic constants of materials based on the velocity measurement of laser-generated multi-mode ultrasound [J]. Chinese Journal of Lasers. 2011, 38(4): 0408004.
董利明, 倪辰荫, 沈中华, 等. 基于激光激发多模态超声波速测量的材料弹性常数测定 [J]. 中国激光. 2011, 38(4): 0408004.

【9】Shi J M, Zheng D, Pan W, et al. Research on FBG ultrasonic sensor based on coupling cone structure and its nondestructive testing [J]. Acta Optica Sinica. 2019, 39(12): 1206004.
史镜名, 郑狄, 潘炜, 等. 基于耦合锥结构的光纤光栅超声波传感器及其无损检测研究 [J]. 光学学报. 2019, 39(12): 1206004.

【10】Hayashi Y, Ogawa S, Cho H, et al. Non-contact estimation of thickness and elastic properties of metallic foils by laser-generated Lamb waves [J]. NDT & E International. 1999, 32(1): 21-27.

【11】Ponschab M, Kiefer D A, Rupitsch S J. Simulation-based characterization of mechanical parameters and thickness of homogeneous plates using guided waves [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019, 66(12): 1898-1905.

【12】Spicer J B. McKie A D W, Wagner J W. Quantitative theory for laser ultrasonic waves in a thin plate [J]. Applied Physics Letters. 1990, 57(18): 1882-1884.

【13】Sale M, Rizzo P, Marzani A. Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli [J]. Mechanical Systems and Signal Processing. 2011, 25(6): 2241-2256.

【14】Shen Z H, Xu B Q, Ni X W, et al. Numerical simulation of pulsed laser induced ultrasound in monolayer and double layer materials [J]. Chinese Journal of Lasers. 2004, 31(10): 1275-1280.
沈中华, 许伯强, 倪晓武, 等. 单层和双层材料中的脉冲激光超声数值模拟 [J]. 中国激光. 2004, 31(10): 1275-1280.

【15】Cao D D, Wang K S, Yan Y N. Simulation of laser-generated single-mode lamb wave by finite element method [J]. Journal of Nanjing University of Aeronautics & Astronautics. 2010, 42(4): 483-487.
曹豆豆, 王开圣, 杨雁南. 激光激发单模兰姆波的有限元模拟 [J]. 南京航空航天大学学报. 2010, 42(4): 483-487.
Cao D D, Wang K S, Yan Y N. Simulation of laser-generated single-mode lamb wave by finite element method [J]. Journal of Nanjing University of Aeronautics & Astronautics. 2010, 42(4): 483-487.
曹豆豆, 王开圣, 杨雁南. 激光激发单模兰姆波的有限元模拟 [J]. 南京航空航天大学学报. 2010, 42(4): 483-487.

【16】Han X H, Li Y, Zhou Q X, et al. Interference of lamb waves at overlap joints [J]. Chinese Journal of Mechanical Engineering. 2017, 53(10): 87-93.
韩晓辉, 李阳, 周庆祥, 等. 兰姆波在搭接焊缝上的干涉 [J]. 机械工程学报. 2017, 53(10): 87-93.

【17】Viktorov I A. Rayleigh and Lamb waves: Physical theory and applications[M]. New York: , 1967.

【18】Xu W, Shen Z H, Ni C Y, et al. The influence of temperature on the Lamb wave of zero group velocity in thin plate [J]. Chinese Journal of Lasers. 2019, 46(12): 1202005.
许薇, 沈中华, 倪辰荫, 等. 温度对薄板中零群速度Lamb波的影响 [J]. 中国激光. 2019, 46(12): 1202005.

【19】Zhan Y, Liu C S, Xue J C. Simulation of laser ultrasonic detection micro crack by equivalent load method [J]. Infrared and Laser Engineering. 2016, 45(10): 64-68.
战宇, 刘常升, 薛俊川. 等效载荷法模拟激光超声微裂纹检测 [J]. 红外与激光工程. 2016, 45(10): 64-68.

【20】Shen Z H, Yuan L, Zhang H C. Laser ultrasound in solids[M]. Beijing: Posts & Telecom Press, 2015.
沈中华, 袁玲, 张宏超. 固体中的激光超声[M]. 北京: 人民邮电出版社, 2015.

【21】Li Y, Cai G X, Dong R Q. The reflection and transmission of Lamb waves at overlap joints [J]. Acta Acustica. 2017, 42(4): 495-503.
李阳, 蔡桂喜, 董瑞琪. 兰姆波在搭接焊缝上的反射和透射 [J]. 声学学报. 2017, 42(4): 495-503.

【22】Lu P X, Wang D, Li Y. Laser ultrasonic C-scan test method of stiffener width [J]. Laser & Optoelectronics Progress. 2020, 57(17): 171203.
路培鑫, 王栋, 李阳. 加强筋宽度的激光超声C扫描检测方法 [J]. 激光与光电子学进展. 2020, 57(17): 171203.

【23】Yang L J, Li Y, Sun J J, et al. Reflection and transmission of laser ultrasonic surface waves on surface defects [J]. Laser & Optoelectronics Progress. 2019, 56(4): 041203.
杨连杰, 李阳, 孙俊杰, 等. 激光超声表面波在表面缺陷上的反射与透射 [J]. 激光与光电子学进展. 2019, 56(4): 041203.

引用该论文

Chen Long,Liu Xing,Zhan Chao,Li Yang. Measurement of Elastic Constants of Metal Foils by Laser Ultrasonic Method[J]. Chinese Journal of Lasers, 2020, 47(11): 1104003

陈龙,刘星,詹超,李阳. 金属箔材弹性常数的激光超声测量方法[J]. 中国激光, 2020, 47(11): 1104003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF