首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221501--1)

基于InsightFace的改进教室人脸识别算法及其应用

Improved Classroom Face Recognition Algorithm Based on InsightFace and Its Application

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对教室场景小人脸识别准确率低的问题,基于InsightFace算法,结合MobileFaceNet结构和DenseNet结构,提出一种将通道相加和通道级联结合起来的Dual-MobileFaceNet轻量级网络结构,提高了识别速度和小人脸识别准确率。同时,提出一种双重分类算法,进一步改善了InsightFace算法的识别分类能力,在LFW数据集上准确率达99.46%。最后将所提算法移植在Jetson TX2嵌入式开发板上,在8人、18人教室场景下识别准确率分别达96.24%、94.68%,每帧识别速度分别约为0.14 s、0.29 s。相比其他大型网络,所提网络更具实时性和有效性。所提算法为教室人脸识别、无感知考勤系统提供了有效思路。

Abstract

Aiming at the problem of low recognition accuracy of small faces in classroom scene, this paper proposes a lightweight network structure (Dual-MobileFaceNet) combining channel addition and channel concatenation based on the InsightFace algorithm by integrating the MobileFaceNet and DenseNet structures, so as to improve the recognition speed and the recognition accuracy of small faces. Meanwhile, a double classification algorithm is proposed to improve the identification and classification ability of the InsightFace algorithm. The proposed algorithm achieves an accuracy of 99.46% on LFW dataset. Finally, the proposed algorithm is transplanted to Jetson TX2 embedded development board. In 8- and 18-people classrooms, the recognition accuracy of the proposed algorithm is 96.24% and 94.68%, and the recognition speed of each frame is 0.14 s and 0.29 s, respectively. Compared with other large networks, the proposed network is more realistic and efficient. The proposed algorithm provides an effective concept for the classroom face recognition and non perception attendance system.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP57.221501

所属栏目:机器视觉

基金项目:广州市科技计划;

收稿日期:2020-02-17

修改稿日期:2020-03-25

网络出版日期:2020-11-01

作者单位    点击查看

田曦初:天津大学电气自动化与信息工程学院, 天津 300072
苏寒松:天津大学电气自动化与信息工程学院, 天津 300072
刘高华:天津大学电气自动化与信息工程学院, 天津 300072
刘腾腾:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:刘高华(suppig@126.com)

备注:广州市科技计划;

【1】Tong Y, Yang H C. Real-time traffic sign detection method based on improved convolution neural network [J]. Laser & Optoelectronics Progress. 2019, 56(7): 071003.
童英, 杨会成. 基于改进卷积神经网络的实时交通标志检测方法 [J]. 激光与光电子学进展. 2019, 56(7): 071003.

【2】Fang D B, Feng G, Cao H Y, et al. Handwritten formula symbol recognition based on multi-feature convolutional neural network [J]. Laser & Optoelectronics Progress. 2019, 56(7): 072001.
方定邦, 冯桂, 曹海燕, 等. 基于多特征卷积神经网络的手写公式符号识别 [J]. 激光与光电子学进展. 2019, 56(7): 072001.

【3】Taigman Y, Yang M, Ranzato M, et al. DeepFace: closing the gap to human-level performance in face verification . [C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE. 2014, 1701-1708.

【4】Sun Y, Wang X G, Tang X O. Deep learning face representation by joint identification-verification . [C]∥Conference and Workshop on Neural Information Processing System, December 8-11, 2014, Montreal, Canada. New York: Curran Associates. 2014, 27: 1097-1105.

【5】Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering . [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE. 2015, 815-823.

【6】Liu W Y, Wen Y D, Yu Z D, et al. SphereFace: deep hypersphere embedding for face recognition . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 6738-6746.

【7】Wang H, Wang Y T, Zhou Z, et al. CosFace: large margin cosine loss for deep face recognition . [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2018, 5265-5274.

【8】Deng J K, Guo J, Xue N N, et al. ArcFace: additive angular margin loss for deep face recognition . [C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA. New York: IEEE. 2019, 4685-4694.

【9】Huang G B. Learned-miller E. Labeled faces in the wild: updates and new reporting procedures [J]. University of Massachusetts Amherst Technical Report. 2014, 17716267.

【10】Moschoglou S, Papaioannou A, Sagonas C, et al. AgeDB: the first manually collected, in-the-wild age database . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 1997-2005.

【11】Chen S, Liu Y, Gao X, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices [M]. ∥Zhou J, Wang Y H, Sun Z A, et al. Biometric recognition. Lecture notes in computer science. Cham: Springer. 2018, 10996: 428-438.

【12】Huang G. Liu Z, van der Maaten L, et al. Densely connected convolutional networks . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 2261-2269.

【13】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 770-778.

【14】Goyal M, Reeves N D, Rajbhandari S, et al. Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices [J]. IEEE Journal of Biomedical and Health Informatics. 2019, 23(4): 1730-1741.

【15】Lim B, Yang B, Kim H. Real-time lightweight CNN for detecting road object of various size . [C]∥2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), April 10-12, 2018, Miami, FL, USA. New York: IEEE. 2018, 202-203.

【16】Yang H X, Chen F, Gan W F. Deep face recognition algorithm based on multitask learning [J]. Laser & Optoelectronics Progress. 2019, 56(18): 181005.
杨恢先, 陈凡, 甘伟发. 基于多任务学习的深层人脸识别算法 [J]. 激光与光电子学进展. 2019, 56(18): 181005.

【17】Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks [J]. IEEE Signal Processing Letters. 2016, 23(10): 1499-1503.

【18】Guo Y D, Zhang L, Hu Y X, et al. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition [M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer. 2016, 9907: 87-102.

【19】Sengupta S, Chen J C, Castillo C, et al. Frontal to profile face verification in the wild . [C]∥2016 IEEE Winter Conference on Applications of Computer Vision (WACV), March 7-10, 2016, Lake Placid, NY, USA. New York: IEEE. 2016.

【20】Howard A G, Zhu M L, Chen B, et al. -04-17)[2020-02-16] . https:∥arxiv. 2017, org/abs/1704: 04861.

【21】Sandler M, Howard A, Zhu M L, et al. MobileNetV2: inverted residuals and linear bottlenecks . [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-2, 2018, Salt Lake City, UT, USA. New York: IEEE. 2018, 4510-4520.

【22】Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices . [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2018, 6848-6856.

【23】Parkhi O M, Vedaldi A, Zisserman A. Deep face recognition . [C]∥2015 British Machine Vision Conference(BMVC), September 7-10, 2015, Swansea, England. [S.l.: s.n.]. 2015.

引用该论文

Tian Xichu,Su Hansong,Liu Gaohua,Liu Tengteng. Improved Classroom Face Recognition Algorithm Based on InsightFace and Its Application[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221501

田曦初,苏寒松,刘高华,刘腾腾. 基于InsightFace的改进教室人脸识别算法及其应用[J]. 激光与光电子学进展, 2020, 57(22): 221501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF