首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:230002--1)

太阳能光伏聚光器光学设计类型研究进展

Research Progress on Optically Designed Solar Photovoltaic Concentrators

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

太阳能聚光器聚焦方法主要有三种,介绍了不同太阳能聚光器的结构设计和聚光原理,并对其聚光性能进行了分析。同时,对国内外最新研究现状进行了总结和论述。三种聚光器中,折射式聚光器常采用不同形状的菲涅耳透镜作为主要光学元件,其设计自由度高,但透镜对光谱敏感容易产生色散;反射式聚光器结构简单,对太阳光谱有天然优势,但其聚光比普遍偏低,且占地面积较大,聚光效率与反射面上的镀层折射率等因素有关;混合式聚光器将不同原理的聚光器进行组合搭配,实现了太阳光能量的最大化利用,同时能在出口处得到均匀光斑。混合式太阳能聚光器中,平板型聚光器因其动态的聚光比和高聚光效率,越来越受到人们的广泛关注,但平板型太阳能聚光器仍需考虑制造和耦合误差的问题。太阳能聚光器是聚光光伏系统的重要组件之一,因此有关聚光器的研究具有重要的应用价值。聚光器的光学设计将向聚光效率更高、接收面聚焦光斑更均匀和系统结构更紧凑的方向发展,随着加工技术的不断成熟,聚光器将更加高效、轻量,其成本将进一步降低。

Abstract

The focusing methods of solar concentrators are mainly classified into three categories. This study introduces the structural designs and operating principles of various solar concentrators, analyses their focusing performance, and summaries the latest research status at home and abroad. First, we consider a refractive concentrator, which involves the usage of Fresnel lens with varying shapes as the main optical element and exhibits a high design freedom, but the lens is sensitive to the spectrum and easy to produce dispersion. Second, we consider a reflective concentrator, which exhibits a simple structure, has natural advantages with respect to the solar spectrum, and covers a larger area, but its concentration ratio is generally low and its concentration efficiency is related to the refractive index of the coating on the reflector and other factors. Finally, we consider a hybrid concentrator, which can be obtained by combining concentrators under different operating principles to achieve maximum utilization of the solar energy and generate a uniform spot at the exit. With respect to the hybrid concentrator, the planar concentrator has attracted increasing attention because of its dynamic concentration ratio and high concentration efficiency; however, the manufacturing and coupling errors associated with the planar concentrator still need to be considered. Regardless, the solar concentrator is one of the key components of a concentrating photovoltaic system, and its research demonstrates considerable futuristic applications. From the development perspective, the optical concentrator designs exhibit considerable potentials because of their high efficiency, uniformity with respect to the focusing spot on the receiving surface, and advanced compact system structure. With the continuous development of the processing technology, the concentrator will become increasingly efficient and lightweight, thereby reducing its cost.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.230002

所属栏目:综述

基金项目:国家自然科学基金;

收稿日期:2019-03-20

修改稿日期:2019-05-28

网络出版日期:2019-12-01

作者单位    点击查看

吕家祺:长春理工大学光电工程学院, 吉林 长春 130012
张宁:长春理工大学光电工程学院, 吉林 长春 130012
尹鹏:长春理工大学光电工程学院, 吉林 长春 130012
徐熙平:长春理工大学光电工程学院, 吉林 长春 130012
张恒溢:长春理工大学光电工程学院, 吉林 长春 130012

联系人作者:张宁(custzn@126.com)

备注:国家自然科学基金;

【1】Song M H. Design, fabrication and reliability study of concentrator multi-junction solar cells [D]. Wuhan: Huazhong University of Science and Technology. 2012, 2-7.
宋明辉. 聚光多结太阳能电池的设计、制备及可靠性研究 [D]. 武汉: 华中科技大学. 2012, 2-7.

【2】Chen Y, Jin B H, Xia X Y, et al. Application and construction of solar photovoltaic power generation in modern commercial buildings [J]. Building Technique Development. 2013, 40(7): 64-67.
陈宇, 金宝合, 夏学禹, 等. 太阳能光伏发电在现代商业建筑中的应用及施工 [J]. 建筑技术开发. 2013, 40(7): 64-67.

【3】Guter W, Sch?ne J, Philipps S P, et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J]. Applied Physics Letters. 2009, 94(22): 223504.

【4】Law D C, King R R, Yoon H, et al. Future technology pathways of terrestrial III-V multijunction solar cells for concentrator photovoltaic systems [J]. Solar Energy Materials and Solar Cells. 2010, 94(8): 1314-1318.

【5】Rumyantsev V D. Terrestrial concentrator PV systems [M]. ∥Luque A L, Andreev V M. Concentrator photovoltaics. Springer series in optical sciences. Berlin Heidelberg: Springer. 2007, 130: 51-74.

【6】Zhang Q J, Wang Y P, Huang Q W, et al. Experimental study on V-trough photovoltaic-photocatalytic hybrid water purification system [J]. Modern Chemical Industry. 2016, 36(11): 73-77.
张庆健, 王一平, 黄群武, 等. V型聚光光伏-光催化水处理系统实验研究 [J]. 现代化工. 2016, 36(11): 73-77.

【7】Ding C, Guo T Z, Zou Y, et al. Design and economical analysis for double V low-power concentrated PV [J]. Mechanical & Electrical Engineering Technology. 2018, 47(5): 102-106.
丁超, 郭铁铮, 邹颖, 等. 双V型低倍聚光光伏设计及经济性分析 [J]. 机电工程技术. 2018, 47(5): 102-106.

【8】Miller D C, Kurtz S R. Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application [J]. Solar Energy Materials and Solar Cells. 2011, 95(8): 2037-2068.

【9】Vivar M, Herrero R, Antón I, et al. Effect of soiling in CPV systems [J]. Solar Energy. 2010, 84(7): 1327-1335.

【10】Zhu Z Y, Tang Z F, Ma Y Q, et al. Study on the solar energy medium temperature collector system with cylindrical line focusing Fresnel type Solar Energy[J]. 0, 2017(2): 33-37.
祝子夜, 唐智锋, 马雨晴, 等. 一种圆柱面线聚焦菲涅尔式太阳能中温集热系统的研究 太阳能[J]. 0, 2017(2): 33-37.

【11】Wang H L. Design and analysis of a linear solar concentrator [D]. Wuhan: Wuhan Institute of Technology. 2014, 44-47.
王海莲. 一种太阳能线形聚光器的设计与分析 [D]. 武汉: 武汉工程大学. 2014, 44-47.

【12】Li W, Xu X P, Song H L, et al. Design and analysis of the line focus Fresnel concentrator based on the diffused focal points method [J]. Infrared and Laser Engineering. 2010, 39(4): 721-726.
李望, 徐熙平, 宋贺伦, 等. 分布式焦点法线聚焦菲涅耳聚光器设计及性能分析 [J]. 红外与激光工程. 2010, 39(4): 721-726.

【13】Feng C Q, Wang R, Zheng H F. Performance analysis of solar PV/T system with transmissive Fresnel concentrator [J]. Acta Energiae Solaris Sinica. 2016, 37(12): 3137-3142.
冯朝卿, 王瑞, 郑宏飞. 基于透射式菲涅尔聚光器的PV/T系统性能研究 [J]. 太阳能学报. 2016, 37(12): 3137-3142.

【14】Hongn M, Larsen S F, Gea M, et al. Least square based method for the estimation of the optical end loss of linear Fresnel concentrators [J]. Solar Energy. 2015, 111: 264-276.

【15】Yu C Y, Cui Q F, Zhu H, et al. Optical design of a double-side Fresnel lens for concentrator [J]. Acta Optica Sinica. 2015, 35(1): 0122008.
于春岩, 崔庆丰, 朱浩, 等. 双面菲涅耳聚光镜设计 [J]. 光学学报. 2015, 35(1): 0122008.

【16】Luo C H, Zhang H, Li Y H. Design of belt-type Fresnel lens with image surface of uniform illuminance [J]. Journal of Applied Optics. 2018, 39(1): 7-11.
罗春华, 张贺, 李艳红. 像面照度均匀的环带式菲涅尔透镜设计 [J]. 应用光学. 2018, 39(1): 7-11.

【17】Zhu Y M, Yang L L, Gao B, et al. Design of rectangle uniform spot for Fresnel concentrator [J]. Optoelectronic Technology. 2018, 38(1): 58-62.
朱亚萌, 杨亮亮, 高贝, 等. 长方形均匀光斑菲涅尔聚光镜的设计 [J]. 光电子技术. 2018, 38(1): 58-62.

【18】Araki K, Yano T. -04-17[2019-05-22] . https:∥patents.glgoo.top/patent/US20080087323A1/en. 2008.

【19】Winston R, non-imaging secondary optics: US20080245401[P/OL]. -10-09[2019-05-22] . https:∥patents.glgoo.top/patent/US20080245401A1/en. 2008.

【20】-02-21[2019-05-22] . https:∥patents.glgoo.top/patent/US20080041441A1/en. 2008.

【21】Ryu K, Rhee J G, Park K M, et al. Concept and design of modular Fresnel lenses for concentration solar PV system [J]. Solar Energy. 2006, 80(12): 1580-1587.

【22】Wang J P, Sun L G, Xu Y, et al. Experimental investigation of double V-trough low concentrator PV system [J]. Journal of Southeast University(Natural Science Edition). 2012, 42(4): 696-700.
王金平, 孙利国, 徐寅, 等. 双V型槽式低倍聚光光伏系统实验研究 [J]. 东南大学学报(自然科学版). 2012, 42(4): 696-700.

【23】Ma B H, Ge S H, Li S Y. Investigation of energy-flux-density distribution of parabolic trough solar concentrators [J]. Laser & Optoelectronics Progress. 2015, 52(8): 080801.
马保宏, 葛素红, 李守义. 槽式抛物面聚光器能流密度分布的理论研究 [J]. 激光与光电子学进展. 2015, 52(8): 080801.

【24】Yan S Y, Chang Z, Wang F, et al. Effect of dust accumulation on focal energy flux density distribution of trough solar concentrator and concentration optimization [J]. Acta Optica Sinica. 2017, 37(7): 0722002.
闫素英, 常征, 王峰, 等. 积尘对槽式太阳能聚光器焦面能流密度分布的影响及聚光优化 [J]. 光学学报. 2017, 37(7): 0722002.

【25】D?hler F, Wild M, Sch?ppi R, et al. Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles [J]. Solar Energy. 2018, 170: 568-575.

【26】Li L J. Research on the structural analysis and optimization of groove type condenser [D]. Changsha: Hunan University. 2015, 21-38.
李廉洁. 槽式聚光器结构的分析与优化 [D]. 长沙: 湖南大学. 2015, 21-38.

【27】Wu D Z, Li M, Li G L, et al. Photothermal properties of compound parabolic concentrator under low interception ratio [J]. Laser & Optoelectronics Progress. 2019, 56(8): 082201.
吴德众, 李明, 李国良, 等. 低截取比下复合抛物面聚光器的光热性能 [J]. 激光与光电子学进展. 2019, 56(8): 082201.

【28】Xiao L X, He Y T. Application and experiment of compound parabolic concentrator(CPC)in photovoltaic/thermal solar system [J]. Acta Energiae Solaris Sinica. 2018, 39(9): 2536-2543.
肖丽仙, 何永泰. 复合抛物面聚光器(CPC)在光伏/热太阳能系统中的应用及实验 [J]. 太阳能学报. 2018, 39(9): 2536-2543.

【29】Zhang B, Chen F, Duan P F, et al. Research on structure and characteristics of asymmetrical compound parabolic concentrator with plane absorber [J]. Acta Optica Sinica. 2017, 37(12): 1208002.
章波, 陈飞, 段鹏飞, 等. 平板吸收体非对称复合抛物聚光器结构及特性研究 [J]. 光学学报. 2017, 37(12): 1208002.

【30】Yan X S, Sun Y N, Zhang D S, et al. Design of the quadruple parabolic trough concentrator Machinery Design & Manufacture[J]. 0, 2015(7): 215-218.
闫小三, 孙耀宁, 张德胜, 等. 四重槽式抛物面聚光器的设计 机械设计与制造[J]. 0, 2015(7): 215-218.

【31】Zhang Q. Theoretical analysis and experimental study of linear Fresnel reflector solar concentrator [D]. Hefei: University of Science and Technology of China. 2013, 15-20.
张谦. 线性菲涅耳反射太阳能聚光器的理论分析与实验研究 [D]. 合肥: 中国科学技术大学. 2013, 15-20.

【32】Du C X, Wang P, Wu Y T, et al. Concentration ratio analysis of linear Fresnel reflector [J]. Acta Optica Sinica. 2011, 31(8): 0808001.
杜春旭, 王普, 吴玉庭, 等. 线性菲涅耳聚光装置的聚光比分析 [J]. 光学学报. 2011, 31(8): 0808001.

【33】Ouyang H Y, Niu Y G, Wang H L, et al. Design of a micro arc linear Fresnel solar heat collector [J]. Electrical Automation. 2015, 37(4): 41-44.
欧阳海玉, 牛玉刚, 王浩林, 等. 微弧线性菲涅尔太阳能集热器的设计 [J]. 电气自动化. 2015, 37(4): 41-44.

【34】Terao A. -11-20[2019-05-22] . https:∥patents.glgoo.top/patent/US7297865B2/en. 2007.

【35】Zhuang L Q. Performance investigation of dish solar concentrator with two reflection mirror [D]. Hangzhou: Zhejiang University. 2010, 22-30.
庄立强. 碟式太阳能聚光器二次反射性能研究 [D]. 杭州: 浙江大学. 2010, 22-30.

【36】Benitez P, Cvetkovic A, Winston R, et al. High-concentration mirror-based Kohler integrating system for tandem solar cells . [C]∥2006 IEEE 4th World Conference on Photovoltaic Energy Conference, May 7-12, 2006, Waikoloa, HI, USA. New York: IEEE. 2006, 690-693.

【37】Fork D K. -03-15[2019-05-22] . https:∥patents.glgoo.top/patent/US7906722B2/en. 2011.

【38】Li S. New Fresnel concentrator structural optimization design [D]. Chengdu: University of Electronic Science and Technology of China. 2018, 46-50.
李霜. 新型菲涅尔聚光器结构优化设计 [D]. 成都: 电子科技大学. 2018, 46-50.

【39】Chong K K, Siaw F L, Wong C W, et al. Design and construction of non-imaging planar concentrator for concentrator photovoltaic system [J]. Renewable Energy. 2009, 34(5): 1364-1370.

【40】Chong K K, Wong C W, Siaw F L, et al. Optical characterization of nonimaging planar concentrator for the application in concentrator photovoltaic system [J]. Journal of Solar Energy Engineering. 2010, 132(1): 011011.

【41】Tsadka S, Segev R, Migalovich P, et al. -03-12[2019-05-22] . https:∥patents.glgoo.top/patent/US20090065045A1/en. 2009.

【42】Wang Y F. Investigation on a paraboloidal dish concentrating photovoltaic/thermal system [D]. Hefei: University of Science and Technology of China. 2013, 24-36.
王云峰. 太阳能碟式聚光发电供热综合利用系统研究 [D]. 合肥: 中国科学技术大学. 2013, 24-36.

【43】Jing L. Study on design of novel Fresnel concentrator in concentrated photovoltaic [D]. Changchun: University of Chinese Academy of Sciences. 2012, 49-65.
荆雷. 新型Fresnel光伏聚光镜的设计研究 [D]. 长春: 中国科学院大学. 2012, 49-65.

【44】Zhuang Z F, Tao X, Yu F H. A compact flyeye concentrator with high uniformity irradiance on the solar cell [J]. Opto-Electronic Engineering. 2014, 41(7): 7-12.
庄振锋, 陶骁, 余飞鸿. 复眼原理设计的紧凑式高均匀性光伏聚光器 [J]. 光电工程. 2014, 41(7): 7-12.

【45】Zhao Q L, Chen J Y, Wu X G, et al. Nonimaging design of a high efficient photovoltaic concentrator with 1000× concentration [J]. Journal of Harbin Institute of Technology. 2011, 43(5): 61-64, 70.
赵清亮, 陈俊云, 吴晓光, 等. 1000倍聚光的光伏聚光器的非成像设计 [J]. 哈尔滨工业大学学报. 2011, 43(5): 61-64, 70.

【46】Karp J H, Tremblay E J, Ford J E. Planar micro-optic solar concentrator [J]. Optics Express. 2010, 18(2): 1122-1133.

【47】Unger B L, Schmidt G R, Moore D T. Dimpled planar lightguide solar concentrators . [C]∥International Optical Design Conference and Optical Fabrication and Testing, June 13-17, 2010, Jackson Hole, WY, United States. Washington, D.C.: OSA. 2010, ITuE5P.

【48】Wu H Y, Chu S C. Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators [J]. Optics Express. 2013, 21(17): 20073-20089.

【49】Teng T C, Lai W C. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker [J]. Optics Express. 2014, 22(S7): A1818-A1834.

【50】Yin P, Xu X P, Jiang Z G, et al. Design method of solar concentrator based on elliptic type Monge-Ampére equations [J]. Acta Optica Sinica. 2017, 37(9): 0922002.
尹鹏, 徐熙平, 姜肇国, 等. 基于椭圆型Monge-Ampére方程的太阳能聚光器设计方法 [J]. 光学学报. 2017, 37(9): 0922002.

【51】Yin P, Xu X P, Jiang Z G, et al. Design method of fan-shaped ray-leakage-free solar concentrator [J]. Acta Optica Sinica. 2018, 38(2): 0208002.
尹鹏, 徐熙平, 姜肇国, 等. 扇形无漏光太阳能聚光器的设计方法 [J]. 光学学报. 2018, 38(2): 0208002.

引用该论文

Lü Jiaqi,Zhang Ning,Yin Peng,Xu Xiping,Zhang Hengyi. Research Progress on Optically Designed Solar Photovoltaic Concentrators[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230002

吕家祺,张宁,尹鹏,徐熙平,张恒溢. 太阳能光伏聚光器光学设计类型研究进展[J]. 激光与光电子学进展, 2019, 56(23): 230002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF