首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901009--1)

非线性掺镱光纤放大器产生宽光谱机理

Mechanism of Broadband Spectrum Generation Based on Nonlinear Ytterbium-Doped Fiber Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

系统地研究了在非线性掺镱光纤放大器中产生宽带光谱的特性,对不同种子脉冲激光的中心波长、放大器增益光纤长度对光谱输出特性的影响进行系统实验及分析。实验中采用非线性偏振旋转锁模技术获得非线性放大器的种子光,输出为耗散孤子脉冲。当种子脉冲激光中心波长为1041 nm、放大器的增益光纤长度为8 m时,获得了较好的平坦宽光谱,波长范围为1040~1600 nm时,其平坦度约为10 dB,其中1040~1250 nm波长范围的宽光谱平坦度小于1.5 dB。

Abstract

The influences of central wavelength of the seed pulse and gain fiber length of the amplifier on the characteristics of broadband spectra are systematically investigated based on nonlinear ytterbium-doped fiber amplifiers. The dissipative solitons from the nonlinear amplifier are obtained by using the nonlinear polarization rotation mode-locking technique. The best flat wide spectrum with wavelength range of 1040-1600 nm is obtained when the center wavelength of the seed pulse is 1041 nm and the gain fiber length of the amplifier is 8 m. The flatness is about 10 dB, and the wide spectral flatness is less than 1.5 dB from 1040 to 1250 nm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0901009

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、国家重点研发计划重点专项;

收稿日期:2019-04-30

修改稿日期:2019-05-21

网络出版日期:2019-09-01

作者单位    点击查看

郭瑾颐:北京工业大学应用数理学院, 北京 100124
徐润亲:北京工业大学应用数理学院, 北京 100124
范路遥:北京工业大学应用数理学院, 北京 100124
许昌兴:北京工业大学应用数理学院, 北京 100124
田金荣:北京工业大学应用数理学院, 北京 100124
宋晏蓉:北京工业大学应用数理学院, 北京 100124

联系人作者:宋晏蓉(yrsong@bjut.cn)

备注:国家自然科学基金、国家重点研发计划重点专项;

【1】Alfano R R and Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters. 24(11), 592-594(1970).

【2】Gersten J I, Alfano R R and Belic M. Combined stimulated Raman scattering and continuum self-phase modulations. Physical Review A. 21(4), 1222-1224(1980).

【3】Sotobayashi H, Chujo W and Ozeki T. Wideband tunable wavelength conversion of 10-Gbit/s return-to-zero signals by optical time gating of a highly chirped rectangular supercontinuum light source. Optics Letters. 26(17), 1314-1316(2001).

【4】Bellini M and H?nsch T W. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Optics Letters. 25(14), 1049-1051(2000).

【5】Wang Y M, Zhao Y H, Nelson J S et al. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters. 28(3), 182-184(2003).

【6】Song S Y, Li Z L, Gao Y H et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles. Chinese Journal of Lasers. 45(8), (2018).
宋思雨, 李中梁, 高云华 等. 用于微针经皮给药成像的扫频OCT系统. 中国激光. 45(8), (2018).

【7】Pioger P H, Couderc V, Leproux P et al. High spectral power density supercontinuum generation in a nonlinear fiber amplifier. Optics Express. 15(18), 11358-11363(2007).

【8】Hao Q and Zeng H P. Cascaded four-wave mixing in nonlinear Yb-doped fiber amplifiers. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), (2014).

【9】Song R, Hou J, Chen S P et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier. Optics Letters. 37(9), 1529-1531(2012).

【10】Guo C Y, Ruan S C, Yan P G et al. Optimized flat supercontinuum generation in high nonlinear fibers pumped by a nanosecond Er/Yb co-doped fiber amplifier. Laser Physics. 24(4), (2014).

【11】Ranka J K, Windeler R S and Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with an anomalous dispersion at 800 nm. Optics Letters. 25(1), 25-27(2000).

【12】Birks T A and Wadsworth W J. Russell P S J. Supercontinuum generation in tapered fibers. Optics Letters. 25(19), 1415-1417(2000).

【13】Yan P G, Zhang G L, Wei H F et al. Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output. Journal of Lightwave Technology. 31(23), 3658-3662(2013).

【14】Wei H F, Chen H W, Chen S P et al. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power. Laser Physics Letters. 10(4), (2013).

【15】Kano H and Hamaguchi H O. Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy. Optics Letters. 28(23), 2360-2362(2003).

【16】Zhao L, Li C, Li Y et al. Hundred-watt-level supercontinuum spectrum generation based on photonic crystal fiber. Chinese Journal of Lasers. 44(2), (2017).
赵磊, 李超, 黎玥 等. 基于光子晶体光纤的百瓦超连续谱的产生. 中国激光. 44(2), (2017).

【17】Song R, Hou J, Liu T et al. A hundreds of watt all-fiber near-infrared supercontinuum. Laser Physics Letters. 10(6), (2013).

【18】Xu R Q, Dong Z K, Tian J R et al. Wavelength tunable ultra-short pulses based on a flat broadband spectrum generated in a nonlinear ytterbium-doped fiber amplifier. Chinese Physics B. 26(1), (2017).

【19】Wang Y Q, Li L and Zhao L M. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier. Laser Physics. 27(3), (2017).

【20】Baldeck P L. Cross-phase modulation in optical Kerr media: review of discovery experiments. Proceedings of SPIE. 8940, (2014).

【21】Liu X M, Cui Y D, Han D D et al. Distributed ultrafast fibre laser. Scientific Reports. 5, (2015).

【22】Kudlinski A, Bendahmane A, Labat D et al. Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber. Optics Express. 21(7), 8437-8443(2013).

【23】Shen Y R and Yang G Z. Theory of self-phase modulation and spectral broadening. ∥Alfano R R. The supercontinuum laser source. New York: Springer-Verlag. 1-32(2016).

【24】Savescu M, Bhrawy A H, Hilal E M et al. Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Romanian Journal of Phusics. 59(5/6), 582-589(2014).

【25】Xiao Y Z, Essiambre R J, Desgroseilliers M et al. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. Optics Express. 22(26), 32039-32059(2014).

【26】Pourbeyram H, Agrawal G P and Mafi A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber. Applied Physics Letters. 102(20), (2013).

【27】Aalto A, Nystr?m E, Ryczkowski P et al. Wavelength correlation maps in Raman supercontinuum generation. [C]∥2013 IEEE Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, May 12-16, 2013, Munich, Germany. New York: IEEE. 14252694, (2014).

【28】Qiu Y and Xu Y Q. Wong K K Y, et al. Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering. Optics Communications. 325, 28-34(2014).

【29】Mondal P, Bhatia N, Mishra V et al. Cascaded Raman and intermodal four-wave mixing in conventional non-zero dispersion-shifted fiber for versatile ultra-broadband continuum generation. Journal of Lightwave Technology. 36(12), 2351-2357(2018).

【30】Choudhury V, Arun S, Prakash R et al. High-power continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers. Applied Optics. 57(21), 5978-5982(2018).

【31】Wang Y H, Ma C S, Li D L et al. Theoretical analysis on gain characteristics of ytterbium-doped fiber amplifier. Acta Photonica Sinica. 37(5), 855-859(2008).
汪玉海, 马春生, 李德禄 等. 掺镱光纤放大器增益特性的理论分析. 光子学报. 37(5), 855-859(2008).

引用该论文

Jinyi Guo,Runqin Xu,Luyao Fan,Changxing Xu,Jinrong Tian,Yanrong Song. Mechanism of Broadband Spectrum Generation Based on Nonlinear Ytterbium-Doped Fiber Amplifier[J]. Chinese Journal of Lasers, 2019, 46(9): 0901009

郭瑾颐,徐润亲,范路遥,许昌兴,田金荣,宋晏蓉. 非线性掺镱光纤放大器产生宽光谱机理[J]. 中国激光, 2019, 46(9): 0901009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF