首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201105--1)

基于欧氏聚类的改进激光雷达障碍物检测方法

Improved Lidar Obstacle Detection Method Based on Euclidean Clustering

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在激光雷达检测障碍物过程中,由于点云近密远疏的特性,车辆的变速移动使得对物体进行分割时出现点云漂移和距离较近的物体难以被分割等现象,容易产生漏检或误检。为了解决此问题,提出一种基于点云射线角度约束的改进欧氏聚类算法,使障碍物检测更加快速准确,所提算法有效解决了点云密度不均匀导致的检测障碍物成功率较低的问题,同时对所提算法进行实车实验。实验结果表明,与传统欧氏聚类算法相比,所提算法能快速准确地对一定范围内的障碍物进行分割和聚类。

Abstract

During lidar detection of obstacles, owing to the characteristics of near dense and far sparse point clouds, the movement with variable speeds of vehicles results in point cloud drifting in the object segmentation. Moreover, objects close to each other are difficult to be segmented, resulting in omissions or incorrect detections. To address these problems, this study proposes an improved Euclidean clustering algorithm based on the point cloud shot-line angle constraint to make obstacle detection more rapid and accurate. The proposed algorithm effectively solves the problem of low success rate in detecting obstacles owing to the uneven point cloud density. Simultaneously, experiments are performed on the proposed algorithm. The experimental results show that the proposed algorithm can quickly and accurately segment and cluster obstacles within a certain range compared with the traditional Euclidean clustering algorithm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.9

DOI:10.3788/LOP57.201105

所属栏目:成像系统

基金项目:国家自然科学基金、贵州省优秀青年科技人才项目、贵州省科技厅支撑、黔科合重大专项;

收稿日期:2020-01-03

修改稿日期:2020-03-09

网络出版日期:2020-10-01

作者单位    点击查看

刘畅:贵州大学机械工程学院, 贵州 贵阳 550025
赵津:贵州大学机械工程学院, 贵州 贵阳 550025
刘子豪:贵州大学机械工程学院, 贵州 贵阳 550025
王玺乔:贵州大学机械工程学院, 贵州 贵阳 550025
赖坤城:贵州大学机械工程学院, 贵州 贵阳 550025

联系人作者:赵津(zhaojin9485@163.com)

备注:国家自然科学基金、贵州省优秀青年科技人才项目、贵州省科技厅支撑、黔科合重大专项;

【1】Feng S R, Xiao W J. An improved DBSCAN clustering algorithm [J]. Journal of China University of Mining & Technology. 2008, 37(1): 105-111.
冯少荣, 肖文俊. DBSCAN聚类算法的研究与改进 [J]. 中国矿业大学学报. 2008, 37(1): 105-111.

【2】Kong D, Wang X Y, Liu Y Q, et al. Vehicle target identification algorithm based on point cloud of vehicle 32-line laser lidar [J]. Science Technology and Engineering. 2018, 18(5): 81-85.
孔栋, 王晓原, 刘亚奇, 等. 基于车载32线激光雷达点云的车辆目标识别算法 [J]. 科学技术与工程. 2018, 18(5): 81-85.

【3】Chen X Y, Yang Y, Xiang Y F. Measurement of point cloud data segmentation based on Euclidean clustering algorithm Bulletin of Surveying and Mapping[J]. 0, 2017(11): 27-31, 36.
陈向阳, 杨洋, 向云飞. 欧氏聚类算法支持下的点云数据分割 测绘通报[J]. 0, 2017(11): 27-31, 36.

【4】Wang X Z, Li J, Li H J, et al. Obstacle detection based on 3D laser scanner and range image for intelligent vehicle [J]. Journal of Jilin University (Engineering and Technology Edition). 2016, 46(2): 360-365.
王新竹, 李骏, 李红建, 等. 基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法 [J]. 吉林大学学报(工学版). 2016, 46(2): 360-365.

【5】Vosselman G, Gorte B, Sithole G, et al. Recognising structure in laser scanner point clouds [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2004, 46(8): 33-38.

【6】Tarsha-Kurdi F, Landes T, Grussenmeyer P. Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from lidar data [2020-01-02].https:∥hal.ird.fr/AO-ARCHITECTURE/halshs-00264843v1.[2020-01-02]. 0.

【7】Yu G, Grossberg M D, Wolberg G, et al. Think globally, cluster locally: a unified framework for range segementation . [C]∥Fourth International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), June 18-20, 2008, Atlanta, GA, USA. [S.l.: s.n.]. 2008.

【8】Xue L J, Qi C K, Zhang B, et al. Object size and orientation recognition based on 3D point cloud Euclideam clustering and RANSAC boundary fitting [J]. Machine Design and Research. 2018, 34(5): 44-48,53.
薛连杰, 齐臣坤, 张彪, 等. 基于3维点云欧氏聚类和RANSAC边界拟合的目标物体尺寸和方位识别 [J]. 机械设计与研究. 2018, 34(5): 44-48,53.

【9】Liu R S. Research on multi-feature fusion recognition algorithm based on minimum Euclidean distance between samples [J]. Computer & Digital Engineering. 2017, 45(12): 2373-2378.
刘如松. 基于样本间最小欧氏距离的多特征融合识别算法研究 [J]. 计算机与数字工程. 2017, 45(12): 2373-2378.

【10】Chen G B, Gao Z H, He L. Step-by-step automatic calibration algorithm for exterior parameters of 3D lidar mounted on vehicle [J]. Chinese Journal of Lasers. 2017, 44(10): 1010004.
陈贵宾, 高振海, 何磊. 车载三维激光雷达外参数的分步自动标定算法 [J]. 中国激光. 2017, 44(10): 1010004.

引用该论文

Liu Chang,Zhao Jin,Liu Zihao,Wang Xiqiao,Lai Kuncheng. Improved Lidar Obstacle Detection Method Based on Euclidean Clustering[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201105

刘畅,赵津,刘子豪,王玺乔,赖坤城. 基于欧氏聚类的改进激光雷达障碍物检测方法[J]. 激光与光电子学进展, 2020, 57(20): 201105

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF