首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170613--1)

基于石墨烯的光纤功能化传感器件和激光器件

Graphene-Based Fiber Functional Sensors and Laser Devices

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

石墨烯材料的发展将光电子学、微纳米技术和材料物理学紧密联系在一起。作为一种柔性薄膜,石墨烯材料在光纤光波导平台上的组装更加方便。近年来,基于石墨烯的光纤功能器件以其丰富的功能推动着光电子学科的发展。重点关注当前广泛应用的传感、激光和非线性器件,介绍了石墨烯及其相关材料的制备工艺和与光纤结合的方法。通过对国内外相关研究成果的综述,充分展现了石墨烯光纤器件的性能和应用优势。

Abstract

The functionalized graphene materials link optoelectronics, micro- and nano-technology, and material physics; further, these materials exhibit good integration capability with fibers and waveguides because of their atomically thin nature. The recent development of optoelectronics has been driven by the graphene-based fiber functional devices. This study focuses on the extensively used sensors, lasers, and nonlinear devices and briefly introduces the fabrication of graphene and related materials along with the implementations of the fiber/waveguide structures. Furthermore, we demonstrate the advantages of graphene-based fiber devices based on their performances and applications by reviewing the relevant research results.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170613

所属栏目:功能光纤

基金项目:国家自然科学基金;

收稿日期:2019-03-06

修改稿日期:2019-04-10

网络出版日期:2019-09-01

作者单位    点击查看

谭腾:电子科技大学光纤传感与通信教育部重点实验室, 四川 成都, 611731
袁中野:电子科技大学光纤传感与通信教育部重点实验室, 四川 成都, 611731
陈远富:电子科技大学电子薄膜与集成器件国家重点实验室, 四川 成都, 610054
姚佰承:电子科技大学光纤传感与通信教育部重点实验室, 四川 成都, 611731

联系人作者:谭腾, 姚佰承(tanteng_ph.d@std.uestc.edu.cn, yaobaicheng@uestc.edu.cn)

备注:国家自然科学基金;

【1】Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films. Science. 306(5696), 666-669(2004).

【2】Geim A K and Novoselov K S. The rise of graphene. ∥Rodgers P. Nanoscience and Technology: A Collection of Reviews from Nature Journals. Singapore: World Scientific. 11-19(2010).

【3】Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438(7065), 197-200(2005).

【4】Geim A K and Novoselov K S. The rise of graphene. Nature Materials. 6(3), (2007).

【5】Geim A K. Graphene: status and prospects. Science. 324(5934), 1530-1534(2009).

【6】Allen M J, Tung V C and Kaner R B. Honeycomb carbon: a review of graphene. Chemical Reviews. 110(1), 132-145(2010).

【7】Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics. Nature Photonics. 4(9), 611-622(2010).

【8】Young R J, Kinloch I A, Gong L et al. The mechanics of graphene nanocomposites: a review. Composites Science and Technology. 72(12), 1459-1476(2012).

【9】Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene. Nano Letters. 8(3), 902-907(2008).

【10】Graphene nanophotonics. Science. 339(6122), 917-918(2013).

【11】Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry''''s phase in graphene. Nature. 438(7065), 201-204(2005).

【12】Katsnelson M I, Novoselov K S and Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics. 2(9), 620-625(2006).

【13】Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene. Science. 320(5881), (2008).

【14】Das A, Pisana S, Chakraborty B et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology. 3(4), 210-215(2008).

【15】Schwierz F. Graphene transistors. Nature Nanotechnology. 5(7), 487-496(2010).

【16】Rodrigo D, Limaj O, Janner D et al. Mid-infrared plasmonic biosensing with graphene. Science. 349(6244), 165-168(2015).

【17】Grigorenko A N, Polini M and Novoselov K S. Graphene plasmonics. Nature Photonics. 6(11), 749-758(2012).

【18】Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator. Nature. 474(7349), 64-67(2011).

【19】Phare C T. Daniel Lee Y H, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics. 9(8), 511-514(2015).

【20】Mo J, Feng G Y, Yang M C et al. Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica. 67(21), (2018).
莫军, 冯国英, 杨莫愁 等. 基于石墨烯的宽带全光空间调制器. 物理学报. 67(21), (2018).

【21】Koppens F H L, Mueller T, Avouris P et al. . Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology. 9(10), 780-793(2014).

【22】Chakraborty S, Marshall O P, Folland T G et al. Gain modulation by graphene plasmons in aperiodic lattice lasers. Science. 351(6270), 246-248(2016).

【23】Zhao J, Wang J X, Qiu W B et al. Surface plasmonic polariton band-stop filters based on graphene. Laser & Optoelectronics Progress. 55(1), (2018).
赵静, 王加贤, 邱伟彬 等. 基于石墨烯的表面等离激元带阻滤波器. 激光与光电子学进展. 55(1), (2018).

【24】Novoselov K S, Fal’ko V I, Colombo L et al. A roadmap for graphene. Nature. 490(7419), 192-200(2012).

【25】Sun Z P, Martinez A and Wang F. Optical modulators with 2D layered materials. Nature Photonics. 10(4), 227-238(2016).

【26】Martinez A and Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics. 7(11), 842-845(2013).

【27】Mueller T, Xia F N and Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics. 4(5), 297-301(2010).

【28】Hill E W, Vijayaragahvan A and Novoselov K. Graphene sensors. IEEE Sensors Journal. 11(12), 3161-3170(2011).

【29】Liu Y X, Dong X C and Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews. 41(6), 2283-2307(2012).

【30】Yavari F and Koratkar N. Graphene-based chemical sensors. The Journal of Physical Chemistry Letters. 3(13), 1746-1753(2012).

【31】Loh K P, Bao Q L, Eda G et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry. 2(12), 1015-1024(2010).

【32】Li W, Chen B G, Meng C et al. Ultrafast all-optical graphene modulator. Nano Letters. 14(2), 955-959(2014).

【33】Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature. 426(6968), 816-819(2003).

【34】Hoffmann P, Dutoit B and Salathé R P. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy. 61, 165-170(1995).

【35】Kou J L, Ding M, Feng J et al. Microfiber-based Bragg gratings for sensing applications: a review. Sensors. 12(7), 8861-8876(2012).

【36】Lou J Y, Wang Y P and Tong L M. Microfiber optical sensors: a review. Sensors. 14(4), 5823-5844(2014).

【37】Xu Y X, Fang W and Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Optics Express. 25(9), 10434-10440(2017).

【38】Chen X F, Zhou K M, Zhang L et al. Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching. Applied Optics. 44(2), 178-182(2005).

【39】Mayorov A S, Gorbachev R V, Morozov S V et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters. 11(6), 2396-2399(2011).

【40】Zhao S, Xie S C, Zhao Z et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water. ACS Sustainable Chemistry & Engineering. 6(6), 7652-7661(2018).

【41】Ping Y J, Gong Y N and Pan C X. Research progress in preparation of graphene from electrochemical exfoliation and its optoelectronic characteristics. Chinese Journal of Lasers. 44(7), (2017).
平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展. 中国激光. 44(7), (2017).

【42】Moon J S, Curtis D, Hu M et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Letters. 30(6), 650-652(2009).

【43】Compton O C and Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 6(6), 711-723(2010).

【44】Guo S J and Dong S J. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews. 40(5), 2644-2672(2011).

【45】de Heer W A, Berger C, Wu X S et al. . Epitaxial graphene electronic structure and transport. Journal of Physics D: Applied Physics. 43(37), (2010).

【46】Zhou H L, Yu W J, Liu L X et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nature Communications. 4, (2013).

【47】Yang Y C, Wu B and Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica. 66(21), (2017).
杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报. 66(21), (2017).

【48】Wang W R, Zhou Y X, Li T et al. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Acta Physica Sinica. 61(3), (2012).
王文荣, 周玉修, 李铁 等. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报. 61(3), (2012).

【49】Cai J M, Ruffieux P, Jaafar R et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 466(7305), 470-473(2010).

【50】Yan X, Cui X, Li B S et al. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Letters. 10(5), 1869-1873(2010).

【51】Brodie B C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London. 149, 249-259(1859).

【52】Staudenmaier L. Verfahren zur darstellung der graphits?ure. Berichte der Deutschen Chemischen Gesellschaft. 31(2), 1481-1487(1898).

【53】Hummers W S. Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society. 80(6), (1958).

【54】Chen J, Yao B W, Li C et al. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 64, 225-229(2013).

【55】Huang L X, Chen Y F, Li P J et al. Effects of preparation temperature of graphite oxide on the structure of graphite and electrochemical properties of graphene-based lithium-ion batteries. Acta Physica Sinica. 61(15), (2012).
黄乐旭, 陈远富, 李萍剑 等. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报. 61(15), (2012).

【56】Alam S N, Sharma N and Kumar L. Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene. 6(1), 1-18(2017).

【57】Wang H B, Maiyalagan T and Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis. 2(5), 781-794(2012).

【58】Kong X K, Chen C L and Chen Q W. Doped graphene for metal-free catalysis. Chemical Society Reviews. 43(8), 2841-2857(2014).

【59】Yao B C, Wu Y, Cheng Y et al. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical. 194, 142-148(2014).

【60】Yao B C, Wu Y, Chen Y et al. Graphene-based microfiber gas sensor[J]. 8421: 8421CD. (2012).

【61】Yao B C, Wu Y, Gong Y et al. A highly sensitive and fast response molecular sensor based on graphene coated microfiber. Proceedings of SPIE. 8421, (2012).

【62】Wu Y, Yao B C, Cheng Y et al. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics. 20(1), 49-54(2014).

【63】Bao Q L, Zhang H, Wang Y et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials. 19(19), 3077-3083(2009).

【64】Sun Z P, Hasan T, Torrisi F et al. Graphene mode-locked ultrafast laser. ACS Nano. 4(2), 803-810(2010).

【65】Bogus?awski J, Wang Y D, Xue H et al. Graphene actively mode-locked lasers. Advanced Functional Materials. 28(28), (2018).

【66】Li C, Chen J H, Wang W S et al. Graphene fibers: manipulation of nonlinear optical properties of graphene bonded fiber devices by thermally engineering Fermi-Dirac distribution. Advanced Optical Materials. 5(21), (2017).

【67】Yao B C, Liu Y, Huang S W et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photonics. 12(1), 22-28(2018).

【68】Yao B C, Huang S W, Liu Y et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature. 558(7710), 410-414(2018).

【69】Fu H W, Jiang Y H, Ding J J et al. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sensors and Actuators B: Chemical. 254, 239-247(2018).

【70】Wu Y, Yao B C, Cheng Y et al. Highly sensitive gas sensor based on graphene/microfiber hybrid waveguide with Mach-Zehnder interferometer. Proceedings of SPIE. 9157, (2014).

【71】Yao B C, Wu Y, Zhang A Q et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express. 22(23), 28154-28162(2014).

【72】Yao B C, Wu Y, Zhang A Q et al. Graphene based surface plasmonics in microfiber multimode interferometer for gas sensing. [C]∥Advanced Photonics, July 27-31, 2014, Barcelona Spain 2014. Washington, D. C.: OSA. SeW2C, (2014).

【73】Yao B C, Rao Y J, Wang Z N et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Scientific Reports. 5, (2016).

【74】Yao B C, Rao Y J, Wang Z N et al. Broadly-tunable pulse generation in cavity-free graphene random fiber lasers. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA. FM3D, (2016).

【75】Li L, Feng Z Y, Qiao X G et al. Ultrahigh sensitive temperature sensor based on Fabry-Perot interference assisted by a graphene diaphragm. IEEE Sensors Journal. 15(1), 505-509(2015).

【76】Zhang J, Liao G Z, Jin S S et al. All-fiber-optic temperature sensor based on reduced graphene oxide. Laser Physics Letters. 11(3), (2014).

【77】Li C, Liu Q W, Peng X B et al. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm. Optics Express. 23(21), 27494-27502(2015).

【78】Lin W W. Fiber-optic current sensor. Optical Engineering. 42(4), 896-897(2003).

【79】Ning Y N, Wang Z P, Palmer A W et al. Recent progress in optical current sensing techniques. Review of Scientific Instruments. 66(5), 3097-3111(1995).

【80】Zheng B C, Yan S C, Xu F et al. High-sensitivity optical fiber current sensor based on suspended graphene membrane. [C]∥International Photonics and OptoElectronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA. OT3B, (2015).

【81】Zheng B C, Yan S C, Chen J H et al. Miniature optical fiber current sensor based on a graphene membrane. Laser & Photonics Reviews. 9(5), 517-522(2015).

【82】Yan S C, Zheng B C, Xu F et al. A microfiber-graphene-integrated microresonator for current sensing. [C]∥International Photonics and Opto Electronics, June 16-19, 2015, Wuhan, China. Washington, D. C.: OSA. OW2C, (2015).

【83】Yan S C, Zheng B C, Chen J H et al. Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters. 107(5), (2015).

【84】Tan Y C, Tou Z Q, Chow K K et al. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications. Optics Express. 23(24), 31286-31294(2015).

【85】Huang M, Gu C S, Sun B et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene. Chinese Journal of Lasers. 44(12), (2017).
黄梦, 顾昌晟, 孙兵 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感. 中国激光. 44(12), (2017).

【86】Zheng B C and Xu F. A compact fiber magnetic sensor based on graphene NEMS. [C]∥Asia Communications and Photonics Conference 2015, November 19-23, 2015, HongKong, China Washington, D. C.: OSA. AM4A, (2015).

【87】Liu Z Y, Yan S C, Lu Z D et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, HongKong, China. Washington, D. C.: OSA. W2A, (2018).

【88】Liu Z Y, Cao H Q and Xu F. Fiber-optic Lorentz force magnetometer based on a gold-graphene composite membrane. Applied Physics Letters. 112(20), (2018).

【89】Ma J, Jin W and Ho H L. A fiber-tip Fabry-Perot pressure sensor with graphene diaphragm. Proceedings of SPIE. 8421, (2012).

【90】Dong N N, Wang S M, Jiang L et al. Pressure and temperature sensor based on graphene diaphragm and fiber Bragg gratings. IEEE Photonics Technology Letters. 30(5), 431-434(2018).

【91】Ge Y X, Zhang P and Zhao W J. Design of micro-pressure sensor based on graphene diaphragm. Semiconductor Optoelectronics. 39(1), 37-41(2018).
葛益娴, 张鹏, 赵伟绩. 基于石墨烯薄膜的光纤微压传感器的设计. 半导体光电. 39(1), 37-41(2018).

【92】Zhao Y, Li X G, Zhou X et al. Review on the graphene based optical fiber chemical and biological sensors. Sensors and Actuators B: Chemical. 231, 324-340(2016).

【93】Hernaez M, Zamarre?o C, Melendi-Espina S et al. Optical fibre sensors using graphene-based materials: a review. Sensors. 17(12), (2017).

【94】Shivananju B N, Yu W Z, Liu Y et al. The roadmap of graphene-based optical biochemical sensors. Advanced Functional Materials. 27(19), (2017).

【95】Peng X L, Li B and Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating. Laser & Optoelectronics Progress. 55(12), (2018).
彭星玲, 李兵, 李玉龙. 微纳光纤布拉格光栅折射率与浓度传感器研究进展. 激光与光电子学进展. 55(12), (2018).

【96】Wu Y, Yao B C, Zhang A Q et al. Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Optics Letters. 39(20), 6030-6033(2014).

【97】Wu Y, Yao B C, Zhang A Q et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters. 39(5), 1235-1237(2014).

【98】Sridevi S, Vasu K S, Bhat N et al. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sensors and Actuators B: Chemical. 223, 481-486(2016).

【99】Zhang A Q, Wu Y, Yao B C et al. Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing. Photonic Sensors. 5(1), 84-90(2015).

【100】Sun Q Z, Luo H P, Luo H B et al. Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection. Optics Express. 23(10), 12777-12783(2015).

【101】Mishra S K, Tripathi S N, Choudhary V et al. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators B: Chemical. 199, 190-200(2014).

【102】Yu C B, Wu Y, Liu X L et al. Graphene oxide deposited microfiber knot resonator for gas sensing. Optical Materials Express. 6(3), 727-733(2016).

【103】Yao B C, Yu C B, Wu Y et al. Graphene-enhanced Brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Letters. 17(8), 4996-5002(2017).

【104】Lehner P, Staudinger C, Borisov S M et al. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nature Communications. 5, (2014).

【105】Jin W, Cao Y C, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nature Communications. 6, (2015).

【106】Girei S H, Shabaneh A A, Ngee-Lim H et al. Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water. Optical Review. 22(3), 385-392(2015).

【107】Yao B C, Wu Y, Webb D J et al. Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection. [C]∥Frontiers in Optics 2015, October 18-22, 2015, San Jose, California, United States. Washington, D. C.: OSA. FTh2E, (2015).

【108】Sridevi S, Vasu K S, Asokan S et al. Sensitive detection of C-reactive protein using optical fiber Bragg gratings. Biosensors and Bioelectronics. 65, 251-256(2015).

【109】Xiao Y, Zhang J, Cai X et al. Fiber-optic humidity sensing based on graphene. Acta Optica Sinica. 35(4), (2015).
肖毅, 张军, 蔡祥 等. 基于石墨烯的光纤湿度传感研究. 光学学报. 35(4), (2015).

【110】Gao R, Lu D F, Cheng J et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sensors and Actuators B: Chemical. 222, 618-624(2016).

【111】Fu H Y, Zhang S W, Chen H et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sensors Journal. 15(10), 5478-5482(2015).

【112】Dash J N and Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics. 10(5), 1123-1131(2015).

【113】Kim J A, Hwang T, Dugasani S R et al. Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sensors and Actuators B: Chemical. 187, 426-433(2013).

【114】Dash J N and Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technology Letters. 26(11), 1092-1095(2014).

【115】Zhang N M Y, Li K W, Shum P P et al. . Graphene enhanced surface plasmon resonance fiber-optic biosensor. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, D. C.: OSA. SM4P, (2016).

【116】Rifat A A, Mahdiraji G A, Ahmed R et al. Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics Journal. 8(1), (2016).

【117】Paul A K and Sarkar A K. Razzak S M A. Graphene coated photonic crystal fiber biosensor based on surface plasmon resonance. [C]∥2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), December 21-23, 2017. Dhaka, Bangladesh. New York: IEEE. 856-859(2017).

【118】Wang F M, Sun Z J, Liu C et al. A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics. 12(6), 1847-1853(2017).

【119】Tong K, Wang F C, Wang M T et al. D-shaped photonic crystal fiber biosensor based on silver-graphene. Optik. 168, 467-474(2018).

【120】Svelto O and Hanna D C. Principles of lasers. (1998).

【121】Keller U, Weingarten K J, Kartner F X et al. Semiconductor saturable absorber mirrors (SESAM''''s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics. 2(3), 435-453(1996).

【122】Popa D, Sun Z, Torrisi F et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Applied Physics Letters. 97(20), (2010).

【123】Popa D, Sun Z, Hasan T et al. Graphene Q-switched, tunable fiber laser. Applied Physics Letters. 98(7), (2011).

【124】Zhang H, Tang D Y, Knize R J et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters. 96(11), (2010).

【125】Liu Z B, He X Y and Wang D N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Optics Letters. 36(16), 3024-3026(2011).

【126】Cui Y D and Liu X M. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons. Optics Express. 21(16), 18969-18974(2013).

【127】Fu B, Hua Y, Xiao X S et al. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), 411-415(2014).

【128】Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm. IEEE Photonics Technology Letters. 28(1), 7-10(2016).

【129】Wang X F, Zhang J H, Gao Z Y et al. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica. 66(11), (2017).
王小发, 张俊红, 高子叶 等. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报. 66(11), (2017).

【130】Zapata J D and Steinberg D. Saito L A M, et al. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Scientific Reports. 6, (2016).

【131】Zhao N, Liu M, Liu H et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Optics Express. 22(9), 10906-10913(2014).

【132】Liu X M, Yang H R, Cui Y D et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Scientific Reports. 6, (2016).

【133】Wang X F, Zhang J H, Peng X L et al. Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber. Chinese Physics B. 27(8), (2018).

【134】Luo Z Q, Zhou M, Weng J et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Optics Letters. 35(21), 3709-3711(2010).

【135】Tang Y L, Yu X C, Li X H et al. High-power thulium fiber laser Q switched with single-layer graphene. Optics Letters. 39(3), 614-617(2014).

【136】Choudhary A, Beecher S J, Dhingra S et al. 456-mW graphene Q-switched Yb∶yttria waveguide laser by evanescent-field interaction. Optics Letters. 40(9), 1912-1915(2015).

【137】Liu S J, Zhu X S, Zhu G W et al. Graphene Q-switched Ho 3+-doped ZBLAN fiber laser at 1190 nm . Optics Letters. 40(2), 147-150(2015).

【138】Huang B, Yi J, Du L et al. Graphene Q-switched vectorial fiber laser with switchable polarized output. IEEE Journal of Selected Topics in Quantum Electronics. 23(1), 26-32(2017).

【139】Yao B C, Rao Y J, Huang S W et al. Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit. Optics Express. 25(7), 8202-8211(2017).

【140】Li D, Xue H, Qi M et al. Graphene actively Q-switched lasers. 2D Materials. 4(2), (2017).

【141】Li D, Xue H, Wang Y D et al. Active synchronization and modulation of fiber lasers with a graphene electro-optic modulator. Optics Letters. 43(15), 3497-3500(2018).

【142】Chen J H, Zheng B C, Shao G H et al. An all-optical modulator based on a stereo graphene-microfiber structure. Light: Science & Applications. 4(12), (2015).

【143】Feng Q Y, Yao B C, Zhou J H et al. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure. Acta Physica Sinica. 64(18), (2015).
冯秋燕, 姚佰承, 周金浩 等. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究. 物理学报. 64(18), (2015).

【144】Gan X T, Zhao C Y, Wang Y D et al. Graphene-assisted all-fiber phase shifter and switching. Optica. 2(5), 468-471(2015).

【145】Yang C H, Wang L, Chen Y Y et al. Optical absorption property of graphene PN junction modulated by voltage in terahertz region. Laser & Optoelectronics Progress. 54(11), (2017).
杨翠红, 王璐, 陈云云 等. 电压调制的石墨烯PN结在太赫兹区的光吸收特性. 激光与光电子学进展. 54(11), (2017).

【146】Zhang J, Peng B, ?zdemir ? K et al. A phonon laser operating at an exceptional point. Nature Photonics. 12(8), 479-484(2018).

【147】Chen W J, ?zdemir ? K, Zhao G M et al. Exceptional points enhance sensing in an optical microcavity. Nature. 548(7666), 192-196(2017).

【148】Bi W H, Ma J Y, Yang K L et al. Graphene-based optical fiber and its applications. Laser & Optoelectronics Progress. 54(4), (2017).
毕卫红, 马敬云, 杨凯丽 等. 石墨烯光纤及其应用. 激光与光电子学进展. 54(4), (2017).

引用该论文

Teng Tan, Zhongye Yuan, Yuanfu Chen, Baicheng Yao. Graphene-Based Fiber Functional Sensors and Laser Devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613

谭腾, 袁中野, 陈远富, 姚佰承. 基于石墨烯的光纤功能化传感器件和激光器件[J]. 激光与光电子学进展, 2019, 56(17): 170613

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF