首页 > 论文 > Photonics Research > 8卷 > 9期(pp:8-14)

Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The recent emerging field of synthetic dimension in photonics offers a variety of opportunities for manipulating different internal degrees of freedom of photons such as the spectrum of light. While nonlinear optical effects can be incorporated into these photonic systems with synthetic dimensions, these nonlinear effects typically result in long-range interactions along the frequency axis. Thus, it has been difficult to use the synthetic dimension concept to study a large class of Hamiltonians that involves local interactions. Here we show that a Hamiltonian that is locally interacting along the synthetic dimension can be achieved in a dynamically modulated ring resonator incorporating χ(3) nonlinearity, provided that the group velocity dispersion of the waveguide forming the ring is specifically designed. As a demonstration we numerically implement a Bose–Hubbard model and explore photon blockade effect in the synthetic frequency space. Our work opens new possibilities for studying fundamental many-body physics in the synthetic space in photonics, with potential applications in optical quantum communication and quantum computation.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.396731

所属栏目:Research Articles

基金项目:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Natural Science Foundation of Shanghai10.13039/100007219; Air Force Office of Scientific Research10.13039/100000181; Vannevar Bush Faculty Fellowship from the U. S. Department of Defense; National Science Foundation10.13039/100000001;

收稿日期:2020-05-04

录用日期:2020-07-11

网络出版日期:2020-07-13

作者单位    点击查看

Luqi Yuan:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Avik Dutt:Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Mingpu Qin:School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Shanhui Fan:Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;e-mail: shanhui@stanford.edu
Xianfeng Chen:State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China;e-mail: xfchen@sjtu.edu.cn

联系人作者:Luqi Yuan(yuanluqi@sjtu.edu.cn)

备注:National Natural Science Foundation of China10.13039/501100001809; National Key Research and Development Program of China10.13039/501100012166; Natural Science Foundation of Shanghai10.13039/100007219; Air Force Office of Scientific Research10.13039/100000181; Vannevar Bush Faculty Fellowship from the U. S. Department of Defense; National Science Foundation10.13039/100000001;

【1】O. Boada, A. Celi, J. I. Latorre and M. Lewenstein. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, (2012).

【2】D. Juki? and H. Buljan. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A. 87, (2013).

【3】A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas and M. Lewenstein. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, (2014).

【4】M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte and L. Fallani. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science. 349, 1510-1513(2015).

【5】B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina and I. B. Spielman. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science. 349, 1514-1518(2015).

【6】B. GadwayB. Gadway. Atom-optics approach to studying transport phenomena. Phys. Rev. A. 92, (2015).

【7】D.-W. Wang, R.-B. Liu, S.-Y. Zhu and M. O. Scully. Superradiance lattice. Phys. Rev. Lett. 114, (2015).

【8】L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio and L. Fallani. Synthetic dimensions and spin-orbit coupling with an optical clock transition. Phys. Rev. Lett. 117, (2016).

【9】S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey and J. Ye. Spin-Corbit-coupled fermions in an optical lattice clock. Nature. 542, 66-70(2017).

【10】H. M. Price, T. Ozawa and N. Goldman. Synthetic dimensions for cold atoms from shaking a harmonic trap. Phys. Rev. A. 95, (2017).

【11】I. Martin, G. Refael and B. Halperin. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X. 7, (2017).

【12】Y. Baum and G. Refael. Setting boundaries with memory: generation of topological boundary states in Floquet-induced synthetic crystals. Phys. Rev. Lett. 120, (2018).

【13】H. Cai, J. Liu, J. Wu, Y. He, S.-Y. Zhu, J.-X. Zhang and D.-W. Wang. Experimental observation of momentum-space chiral edge currents in room-temperature atoms. Phys. Rev. Lett. 122, (2019).

【14】K. Tschernig, R. J. de León-Montiel, A. Pérez-Leija and K. Busch. Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs. Photon. Res. 8, 1161-1170(2020).

【15】L. Yuan, Q. Lin, M. Xiao and S. Fan. Synthetic dimension in photonics. Optica. 5, 1396-1405(2018).

【16】T. Ozawa and H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349-357(2019).

【17】L. Yuan, Y. Shi and S. Fan. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741-744(2016).

【18】T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg and I. Carusotto. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A. 93, (2016).

【19】E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit and M. Segev. Photonic topological insulator in synthetic dimensions. Nature. 567, 356-360(2019).

【20】X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo and Z.-W. Zhou. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, (2015).

【21】A. Schwartz and B. Fischer. Laser mode hyper-combs. Opt. Express. 21, 6196-6204(2013).

【22】L. Yuan, M. Xiao, Q. Lin and S. Fan. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B. 97, (2018).

【23】E. Lustig, Y. Plotnik, Z. Yang and M. Segev. 3D parity time symmetry in 2D photonic lattices utilizing artificial gauge fields in synthetic dimensions. Conference on Lasers and Electro-Optics. (2019).

【24】L. Yuan and S. Fan. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica. 3, 1014-1018(2016).

【25】Q. Lin, M. Xiao, L. Yuan and S. Fan. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 7, (2016).

【26】Y. Zhang and Y. Zhu. Generation of Weyl points in coupled optical microdisk-resonator arrays via external modulation. Phys. Rev. A. 96, (2017).

【27】X.-W. Luo, X. Zhou, J.-S. Xu, C.-F. Li, G.-C. Guo, C. Zhang and Z.-W. Zhou. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light. Nat. Commun. 8, (2017).

【28】X.-F. Zhou, X.-W. Luo, S. Wang, G.-C. Guo, X. Zhou, H. Pu and Z.-W. Zhou. Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity. Phys. Rev. Lett. 118, (2017).

【29】X.-W. Luo, C. Zhang, G.-C. Guo and Z.-W. Zhou. Topological photonic orbital-angular-momentum switch. Phys. Rev. A. 97, (2018).

【30】L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen and S. Fan. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett. 122, (2019).

【31】A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao and S. Fan. A single photonic cavity with two independent physical synthetic dimensions. Science. 367, 59-64(2020).

【32】A. Dutt, M. Monkov, Q. Lin, L. Yuan, D. A. B. Miller and S. Fan. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, (2019).

【33】B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov and B. J. Eggleton. Spectral photonic lattices with complex long-range coupling. Optica. 4, 1433-1436(2017).

【34】C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù and P. Lu. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. 120, (2018).

【35】I. Bloch, J. Dalibard and W. Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885-964(2008).

【36】D. E. Chang, V. Vuleti? and M. D. Lukin. Quantum nonlinear optics–photon by photon. Nat. Photonics. 8, 685-694(2014).

【37】M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman and M. Greiner. Microscopy of the interacting Harper-CHofstadter model in the two-body limit. Nature. 546, 519-523(2017).

【38】D. Roy, C. M. Wilson and O. Firstenberg. Colloquium: strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, (2017).

【39】D. A. Abanin, E. Altman, I. Bloch and M. Serbyn. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, (2019).

【40】T. Ozawa and I. Carusotto. Synthetic dimensions with magnetic fields and local interactions in photonic lattices. Phys. Rev. Lett. 118, (2017).

【41】L. Barbiero, L. Chomaz, S. Nascimbene and N. Goldman. Bose-Hubbard physics in synthetic dimensions from interaction trotterization. (2019).

【42】R. W. BoydR. W. Boyd. Nonlinear Optics. : Academic, (2008).

【43】D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel and G. Leuchs. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18, (2016).

【44】H. SambeH. Sambe. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A. 7, 2203-2213(1973).

【45】A. Yariv and P. Yeh. Photonics: Optical Electronics in Modern Communications. : Oxford University, (2007).

【46】H. A. HausH. A. Haus. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173-1185(2000).

【47】H. A. HausH. A. Haus. Waves and Fields in Optoelectronics. : Prentice-Hall, (1984).

【48】A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko and L. Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A. 71, (2005).

【49】Y. K. Chembo, D. V. Strekalov and N. Yu. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 104, (2010).

【50】M. Hafezi, D. E. Chang, V. Gritsev, E. Demler and M. D. Lukin. Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide. Phys. Rev. A. 85, (2012).

【51】A. Biella, L. Mazza, I. Carusotto, D. Rossini and R. Fazio. Photon transport in a dissipative chain of nonlinear cavities. Phys. Rev. A. 91, (2015).

【52】K. G. L. Pedersen and M. Pletyukhov. Few-photon scattering on Bose-Hubbard lattices. Phys. Rev. A. 96, (2017).

【53】C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A. 31, 3761-3774(1985).

【54】S. Fan, ?. E. Kocaba? and J.-T. Shen. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A. 82, (2010).

【55】L. Yuan, M. Xiao, S. Xu and S. Fan. Creating anyons from photons using a nonlinear resonator lattice subject to dynamic modulation. Phys. Rev. A. 96, (2017).

【56】M. O. Scully and M. S. Zubairy. Quantum Optics. : Cambridge University, (1997).

【57】K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup and H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature. 436, 87-90(2005).

【58】A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl and M. D. Lukin. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, (2011).

【59】B. Li, R. Huang, X. Xu, A. Miranowicz and H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. 7, 630-641(2019).

【60】V. Venkataraman, K. Saha and A. L. Gaeta. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photonics. 7, 138-141(2013).

【61】M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek, K. Murr, T. Wilk and G. Rempe. Three-photon correlations in a strongly driven atom-cavity system. Phys. Rev. Lett. 107, (2011).

【62】T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu and A. Imamo?lu. Ultrafast all-optical switching by single photons. Nat. Photonics. 6, 605-609(2012).

【63】C. Junge, D. O’shea, J. Volz and A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, (2013).

【64】S. Kato and T. Aoki. Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett. 115, (2015).

【65】M. Radulaski, J. L. Zhang, Y.-K. Tzeng, K. G. Lagoudakis, H. Ishiwata, C. Dory, K. A. Fischer, Y. A. Kelaita, S. Sun, P. C. Maurer, K. Alassaad, G. Ferro, Z.-X. Shen, N. A. Melosh, S. Chu and J. Vu?kovi?. Nanodiamond integration with photonic devices. Laser Photon. Rev. 13, (2019).

【66】C. K. Ha, K. S. Lee, D. Kwon and M. S. Kang. Widely tunable ultra-narrow-linewidth dissipative soliton generation at the telecom band. Photon. Res. 8, 1100-1109(2020).

【67】W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins and H. Schmidt. Atomic spectroscopy on a chip. Nat. Photonics. 1, 331-335(2007).

【68】R. Ritter, N. Gruhler, W. Pernice, H. Kübler, T. Pfau and R. L?w. Atomic vapor spectroscopy in integrated photonic structures. Appl. Phys. Lett. 107, (2015).

【69】L. Stern, B. Desiatov, N. Mazurski and U. Levy. Strong coupling and high-contrast all-optical modulation in atomic cladding waveguides. Nat. Commun. 8, (2017).

【70】Y. Zhu, J. A. Greenberg, N. A. Husein and D. J. Gauthier. Giant all-optical tunable group velocity dispersion in an optical fiber. Opt. Express. 22, 14382-14391(2014).

【71】M. B. Mia, N. Jaidye and S. Kim. Extremely high dispersions in heterogeneously coupled waveguides. Opt. Express. 27, 10426-10437(2019).

【72】N. R. A. Lee, M. Pechal, E. Alex Wollack, P. Arrangoiz-Arriola, Z. Wang and A. H. Safavi-Naeini. Electric fields for light: propagation of microwave photons along a synthetic dimension. (2019).

【73】T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafei, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg and I. Carusotto. Topological photonics. Rev. Mod. Phys. 91, (2019).

引用该论文

Luqi Yuan, Avik Dutt, Mingpu Qin, Shanhui Fan, and Xianfeng Chen, "Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons," Photonics Research 8(9), B8 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF