Chinese Optics Letters, 2020, 18 (1): 010201, Published Online: Dec. 12, 2019  

Coulomb potential influence in the attoclock experimental scheme Download: 1033次

Author Affiliations
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract
Coulomb potential may induce a significant angular offset to the two-dimensional photoelectron momentum distributions for atoms subject to strong elliptically polarized laser fields. In the attoclock experiment, this offset usually cannot be easily disentangled from the contribution of tunneling delay and poses a main obstacle to the precise measurement of tunneling delay. Based on semiclassical calculations, here, we propose a method to extract the equivalent temporal offset induced solely by Coulomb potential (TOCP) in an attoclock experiment. Our calculations indicate that, at constant laser intensity, the TOCP shows distinctive wavelength dependence laws for different model atoms, and the ratio of the target atom’s TOCP to that of H becomes insensitive to wavelength and linearly proportional to (2Ip) 3/2, where Ip is the ionization potential of the target atom. This wavelength and Ip dependence of TOCP can be further applied to extract the Coulomb potential influence. Our work paves the way for an accurate measurement of the tunneling delay in the tunneling ionization of atoms subject to intense elliptically polarized laser fields.

Zhilei Xiao, Wei Quan, Songpo Xu, Shaogang Yu, Yanlan Wang, Meng Zhao, Mingzheng Wei, Yu Zhou, Xuanyang Lai, Jing Chen, Xiaojun Liu. Coulomb potential influence in the attoclock experimental scheme[J]. Chinese Optics Letters, 2020, 18(1): 010201.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!