首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901002--1)


Time-Resolved Characteristics of Atomic Emission Spectrum in Sodium-Argon Mixture after Ionization

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


研究钠氩(Na-Ar)混合物电离后产生的原子发射光谱的时间分辨特性。氩763.5 nm光谱强度随时间演变出现2个峰,第1个峰的衰减时间为(33.3±2.3) ns,激发态钠通过碰撞传能[(时间常数为(15.2±0.8) ns]将氩激发到2p6能级,再由该能级的粒子快速辐射形成第1个峰;第2个峰由氩离子与电子复合产生,其衰减过程包括快过程[(0.24±0.03) μs]和慢过程[(3.98±1.03) μs]。利用电子浓度随时间的演变关系分析了复合过程对衰减时间的影响机理,获得了电子浓度、电子温度随时间的演变关系。利用时间分辨光谱解释了钠双线辐射加宽差异的假象,其成因是Stark加宽后的氩588.9 nm谱线叠加在钠D2线上以及钠双线的自吸收。复合后,激发态氩原子的能级间隔较小,经过级联弛豫后,2p6能级粒子数的积累时间比钠3P能级更短,氩原子发射谱线的持续时间明显短于钠原子。


Herein, the atomic emission spectrum of a sodium-argon mixture is obtained after ionization, and its time-resolved characteristics are experimentally studied. When observing the time-resolved evolution of argon spectral intensity at 763.5 nm, two peaks appear. The first peak with a decay time of (33.3±2.3) ns is observed via the fast radiation of particles at argon 2p6 state, which excited through collisional energy transfer from the excited sodium atom [time constant is (15.2±0.8) ns]. Following the recombination of argon ions and electrons, the second peak is observed; this peak''s decay process contains both a fast [(0.24±0.03) μs] and a slow [(3.98±1.03) μs] steps. Using the evolution relationship of electron density with time, the mechanism for decay time, which is impacted by the recombination process, is analyzed. The evolution relationships of electron density and electron temperature with time are obtained. The time-resolved atomic emission spectrum can experimentally explain the unusual phenomenon of the obviously different broadening between the D1 and D2 lines of the sodium spectra; these reasons are the spectral line of argon at 588.9 nm overlaying the sodium D2 line (589.0 nm) after Stark broadening and the self-absorption on two D lines of the sodium. Because the energy level splitting is small for the excited argon atom after recombination, the particle population accumulated on the 2p6 state via cascade relaxation takes a shorter time than that on the sodium 3P state, and the duration of the argon atom emission spectrum is obviously shorter than that of the sodium atom.








作者单位    点击查看

胡墅:中国科学院大连化学物理研究所化学激光重点实验室, 辽宁 大连 116023
盖宝栋:中国科学院大连化学物理研究所化学激光重点实验室, 辽宁 大连 116023
李琛:中国科学院重大科技任务局, 北京 100864
娄茗淇:大连理工大学物理学院, 辽宁 大连 116023
刘栋:中国科学院大连化学物理研究所化学激光重点实验室, 辽宁 大连 116023
郭敬为:中国科学院大连化学物理研究所化学激光重点实验室, 辽宁 大连 116023

联系人作者:胡墅(hushu@dicp.ac.cn); 郭敬为( jingweiguo@dicp.ac.cn);


【1】Krupke W F. Diode pumped alkali lasers (DPALs). Progress in Quantum Electronics. 36(1), 4-28(2012).

【2】Xu C, Tan R Q, Li Z Y et al. 2.8 W linearly polarized output of rubidium vapor laser with diode pumping. Chinese Journal of Lasers. 40(1), (2013).
徐程, 谭荣清, 李志永 等. 半导体抽运铷蒸气输出2.8 W 线偏振铷激光. 中国激光. 40(1), (2013).

【3】Yang J, Wang H K, Zhu Y et al. Output characteristics of multistage alkali vapor laser amplifiers. Acta Optica Sinica. 37(9), (2017).
杨静, 王韩奎, 朱雨 等. 多级碱金属蒸气激光放大器的输出特性. 光学学报. 37(9), (2017).

【4】Chen F, Gao F, Xu Y et al. Diode-pumped cesium vapor laser with high efficiency output. Chinese Journal of Lasers. 42(1), (2015).
陈飞, 高飞, 徐艳 等. 激光二极管抽运铯蒸气激光实现高效率瓦级输出. 中国激光. 42(1), (2015).

【5】Han G C, Li Z Y, Tan R Q et al. Output properties of self-heated alkali laser with mini vapor cell. Chinese Journal of Lasers. 44(6), (2017).
韩高策, 李志永, 谭荣清 等. 短蒸气室自加热碱金属激光器输出特性. 中国激光. 44(6), (2017).

【6】Zhdanov B V, Rotondaro M D, Shaffer M K et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system. Optics Communications. 354, 256-258(2015).

【7】Waichman K, Barmashenko B D and Rosenwaks S. Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results. Journal of the Optical Society of America B. 31(11), 2628-2637(2014).

【8】Zhao X F, Yang Z N, Hua W H et al. Ionization degree measurement in the gain medium of a hydrocarbon-free rubidium vapor laser operating in pulsed and CW modes. Optics Express. 25(8), 9458-9470(2017).

【9】Readle J D. Atomatic alkali lasers pumped by the dissociation of photoexcited alkali-rare gas collision pairs Urbana-Champaign: University of. Illinois. 3-6(2010).

【10】Knize R J, Zhdanov B V and Shaffer M K. Photoionization in alkali lasers. Optics Express. 19(8), 7894-7902(2011).

【11】Xu X Q, Shen B L, Huang J H et al. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow. Journal of Applied Physics. 122(2), (2017).

【12】Markosyan A H. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers. Optics Express. 26(1), 488-495(2018).

【13】Chung H K, Shurgalin M and Babb J. Absorption spectra of broadened sodium resonance lines in presence of rare gases. AIP Conference Proceedings. 645, 211-217(2002).

【14】Aho K, Lindblom P, Olsson T et al. Pressure-dependent decay of the configuration in argon excited by alpha-particles and protons. Journal of Physics B: Atomic, Molecular and Optical Physics. 31(18), 4191-4203(1998).

【15】Inoue G, Setser D W and Sadeghi N. Radiative lifetimes and collisional energy transfer rate constants in Ar of the Ar(3p 55p) and Ar(3p 55p'''') states . The Journal of Chemical Physics. 76(2), 977-983(1982).

【16】Lilly R A. Transition probabilities in the spectra of NeI, ArI, and KrI. Journal of the Optical Society of America. 66(3), 245-249(1976).

【17】Shaikh N M, Rashid B, Hafeez S et al. Measurement of electron density and temperature of a laser-induced zinc plasma. Journal of Physics D: Applied Physics. 39(7), 1384-1391(2006).

【18】Griem H. Spectral line broadening by plasmas. 350, (1974).

【19】Aragón C and Aguilera J A. Characterization of laser induced plasmas by optical emission spectroscopy: areview of experiments and methods. Spectrochimica Acta Part B: Atomic Spectroscopy. 63(9), 893-916(2008).

【20】Guy M, Guild E, Young J et al. Pressure induced hyperfine shift and broadening rates of the 5 2S1/2-6 2P1/2 and 5 2S1/2-6 2P3/2 transitions of rubidium with He, Ar, CH4, and C2H6. Journal of Quantitative Spectroscopy & Radiative Transfer. 169, 14-22(2016).

【21】Allard N and Kielkopf J. The effect of neutral nonresonantcollisions on atomic spectral lines. Reviews of Modern Physics. 54(4), 1103-1182(1982).

【22】Demtroder W. Laser spectroscopy:vol.1: basic principles. 4th ed. Berlin, Heidelberg: Springer. 79, (2008).

【23】Hu S, Gai B D, Guo J W et al. Population inversion in sodium D2 transition based on sodium-ethane excimer pairs. Chinese Optics Letters. 15(11), (2017).

【24】Hu S, Gai B D, Xia X S et al. Experimental study of sodium D2 line fluorescence lifetime of sodium-ethane excimer pairs. Chinese Journal of Lasers. 44(9), (2017).
胡墅, 盖宝栋, 夏栩笙 等. 钠乙烷准分子产生钠D2线荧光寿命的实验研究. 中国激光. 44(9), (2017).

【25】Hewitt J D and Eden J G. Lasing on the D lines of sodium pumped by free→free transitions of Na-Xe collision pairs. Applied Physics Letters. 101(24), (2012).


Shu Hu,Baodong Gai,Chen Li,Mingqi Lou,Dong Liu,Jingwei Guo. Time-Resolved Characteristics of Atomic Emission Spectrum in Sodium-Argon Mixture after Ionization[J]. Chinese Journal of Lasers, 2019, 46(9): 0901002

胡墅,盖宝栋,李琛,娄茗淇,刘栋,郭敬为. 钠氩混合物电离后原子发射光谱的时间分辨特性[J]. 中国激光, 2019, 46(9): 0901002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF