首页 > 论文 > Chinese Optics Letters > 19卷 > 1期(p:011301)

Intelligent algorithms: new avenues for designing nanophotonic devices [Invited] [Cover Paper]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of the traditional methods rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel configurations, which is universal and efficient for different materials, different structures, different modes, different wavelengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algorithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization of photonic chips.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL202119.011301

所属栏目:Integrated Optics

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 11604378, 91850117, and 11654003) and the Beijing Institute of Technology Research Fund Program for Young Scholars.

收稿日期:2020-06-10

录用日期:2020-09-04

网络出版日期:2020-12-14

作者单位    点击查看

马丽凤:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
李靖:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
刘舟慧:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
张宇轩:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
张念恩:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
郑澍乔:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
路翠翠:Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China;Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China

联系人作者:路翠翠(cuicuilu@bit.edu.cn)

【1】Y. Chen, Y. Cheng, R. Zhu, F. Wang, H. Cheng, Z. Liu, C. Fan, Y. Xue, Z. Yu, J. Zhu, X. Hu and Q. Gong. Nanoscale all-optical logic devices. Sci. Chin. Phys. Mech. 62, (2019).

【2】K. Yao, R. Unni and Y. Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics. 8, (2019).

【3】S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vuckovi? and A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics. 12, (2018).

【4】N. PalumboN. Palumbo. 525.770 – Intelligent algorithms. (0).N. PalumboN. Palumbo. 525.770 – Intelligent algorithms. (0).

【5】M. S. Kumar, S. Menabde, S. Yu and N. Park. Directional emission from photonic crystal waveguide terminations using particle swarm optimization. J. Opt. Soc. Am. B. 27, (2010).

【6】M. D. Huntington, L. J. Lauhon and T. W. Odom. Subwavelength lattice optics by evolutionary design. Nano Lett. 14, (2014).

【7】Z. Liu, X. Liu, Z. Xiao, C. Lu, H. Wang, Y. Wu, X. Hu, Y. Liu, H. Zhang and X. Zhang. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica. 6, (2019).

【8】C. Lu, Z. Liu, Y. Wu, Z. Xiao, D. Yu, H. Zhang, C. Wang, X. Hu, Y. C. Liu, X. Liu and X. Zhang. Nanophotonic polarization routers based on an intelligent algorithm. Adv. Opt. Mater. 8, (2020).

【9】S. R. Granter, A. H. Beck and D. J. Papke. AlphaGo, deep learning, and the future of the human microscopist. Arch. Pathol. Lab. Med. 141, (2017).

【10】G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science. 313, (2006).

【11】Y. LeCun, Y. Bengio and G. Hinton. Deep learning. Nature. 521, (2015).

【12】A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos and S. G. Johnson. Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, (2010).

【13】I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf and H. Suchowski. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 7, (2018).

【14】D. Liu, Y. Tan, E. Khoram and Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon. 5, (2018).

【15】L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali, F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D. N. Neshev and A. E. Miroshnichenkoa. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photon. 2, (2020).

【16】M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin and K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep. 9, (2019).

【17】W. Ma, F. Cheng and Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano. 12, (2018).

【18】B. Wu, K. Ding, C. T. Chan and Y. Chen. Machine prediction of topological transitions in photonic crystals. (2017).

【19】J. Zhao, Y. S. H. Zhu, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang and A. Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber. Adv. Photon. 1, (2019).

【20】I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio. Generative adversarial nets. (2014).

【21】J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang and J. A. Fan. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano. 13, (2019).

【22】W. Ma, F. Cheng, Y. Xu, Q. Wen and Y. Liu. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi‐supervised learning strategy. Adv. Mater. 31, (2019).

【23】Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, M. TaherSima, D. Jha, K. Parsons and M. Qi. Generative deep learning model for a multi-level nano-optic broadband power splitter. (2020).

【24】H. Zhou, Y. Zhao, G. Xu, X. Wang, Z. Tan, J. Dong and X. Zhang. Chip-scale optical matrix computation for PageRank algorithm. IEEE J. Sel. Top. Quant. 26, (2020).

【25】H. Zhou, Y. Zhao, X. Wang, D. Gao, J. Dong and X. Zhang. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photon. 7, (2020).

【26】H. Zhou, Y. Zhao, Y. Wei, F. Li, J. Dong and X. Zhang. All-in-one silicon photonic polarization processor. Nanophotonics. 8, (2019).

【27】A. M. Hammond and R. M. Camacho. Designing integrated photonic devices using artificial neural networks. Opt. Express. 27, (2019).

【28】P. Baldi, P. Sadowski and D. Whiteson. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, (2014).

【29】W. J. Brouwer, J. D. Kubicki, J. O. Sofo and C. L. Giles. An investigation of machine learning methods applied to structure prediction in condensed matter. (2014).

【30】M. Rupp, A. Tkatchenko, K. Müller and O. A. von Lilienfeld. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, (2012).

【31】S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou and X. Li. Compression of phase-only holograms with JPEG standard and deep learning. Appl. Sci. 8, (2019).

【32】S. So, J. Mun and J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Appl. Mater. Inter. 11, (2019).

【33】Y. Chen, J. Zhu, Y. Xie, N. Feng and Q. H. Liu. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale. 11, (2019).

【34】T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou and K. Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photon. Res. 7, (2019).

【35】Z. Liu, D. Zhu, S. P. Rodrigues, K. Lee and W. Cai. Generative model for the inverse design of metasurfaces. Nano Lett. 18, (2018).

【36】J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark and M. Soljacic. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, (2018).

【37】P. R. Wiecha and O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett. 20, (2019).

【38】H. Ren, W. Shao, Y. Li, F. Salim and M. Gu. Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv. 6, (2020).

【39】W. Ma and Y. Liu. A data-efficient self-supervised deep learning model for design and characterization of nanophotonic structures. Sci. China Phys. Mech. Astron. 63, (2020).

【40】Z. Liu, D. Zhu, K. Lee, A. S. Kim, L. Raju and W. Cai. Compounding meta-atoms into meta-molecules with hybrid artificial intelligence techniques. Adv. Mater. 32, (2019).

【41】O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar and A. Adibi. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale. 11, (2019).

【42】S. So, T. Badloe, J. Noh, J. Bravo-Abad and J. Rho. Deep learning with coherent nanophotonic circuits. Nanophotonics. 9, (2020).

【43】Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund and M. Solja?i?. Deep learning enabled inverse design in nanophotonics. Nat. Photon. 11, (2017).

【44】J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran and W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 569, (2019).

【45】M. Veli, Y. Luo, A. Ozcan, M. Jarrahi, Y. Rivenson, N. T. Yardimei and X. Lin. All-optical machine learning using diffractive deep neural networks. Science. 361, (2018).

【46】S. Jiao, J. Feng, Y. Gao, T. Lei, Z. Xie and X. Yuan. Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett. 44, (2019).

【47】E. Khoram, A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan and Z. Yu. Nanophotonic media for artificial neural inference. Opt. Lett. 7, (2019).

【48】J. Chang, V. Sitzmann, X. Dun, W. Heidrich and G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, (2018).

【49】J. Jiang and J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19, (2019).

【50】I. Sajedian, J. Kim and J. Rho. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng. 5, (2019).

【51】Y. Qu, L. Jing, Y. Shen, M. Qiu and M. Solja?i?. Basic instincts. ACS Photon. 6, (2019).

【52】M. HutsonM. Hutson. Migrating knowledge between physical scenarios based on artificial neural networks. Science. 360, (2018).

【53】S. Jiao, Y. Gao, J. Feng, T. Lei and X. Yuan. Does deep learning always outperform simple linear regression in optical imaging?. Opt. Express. 28, (2020).

【54】E. Goi, Q. Zhang, X. Chen, H. Luan and M. Gu. Perspective on photonic memristive neuromorphic computing. PhotoniX. 1, (2020).

【55】T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde, H. Ruiz Euler, H. Broersma, P. A. Bobbert, F. A. Zwanenburg and W. G. van der Wiel. Classification with a disordered dopant-atom network in silicon. Nature. 577, (2020).

【56】Y. Kiarashinejad, S. Abdollahramezani and A. Adibi. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. NPJ Comput. Mater. 6, (2020).

【57】T. Han, C. Liu, W. Yang and D. Jiang. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application. ISA Trans. 97, (2020).

【58】M. Wang and W. Deng. Deep visual domain adaptation: a survey. Neurocomputing. 312, (2018).

【59】K. Chadan, P. C. Sabatier and R. G. Newton. Inverse Problems in Quantum Scattering Theory. : Springer Science & Business Media, (1988).

【60】A. Y. Piggott, J. Petykiewicz, L. Su and J. Vu?kovi?. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 7, (2017).

【61】C. Dory, D. Vercruysse, K. Y. Yang, N. V. Sapra, A. E. Rugar, S. Sun, D. M. Lukin, A. Y. Piggott, J. L. Zhang, M. Radulaski, K. G. Lagoudakis, L. Su and J. Vu?kovi?. Inverse-designed diamond photonics. Nat. Commun. 10, (2019).

【62】J. Lu and J. Vu?kovi?. Nanophotonic computational design. Opt. Express. 21, (2013).

【63】N. V. Sapra, D. Vercruysse, L. Su, K. Y. Yang, J. Skarda, A. Y. Piggott and J. Vuckovic. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum. 25, (2019).

【64】A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec and J. Vu?kovi?. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, (2015).

【65】L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz and J. Vu?kovi?. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon. 5, (2017).

【66】N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer and J. Vu?kovi?. On-chip integrated laser-driven particle accelerator. Science. 367, (2020).

【67】K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù and J. Vu?kovi?. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, (2020).

【68】P. Camayd-Mu?oz, G. Roberts, C. Ballew, M. Debbas and A. Faraon. Inverse designed shape-reconfigurable multifunctional photonics. (2020).

【69】J.-K. Byun, J.-H. Ko, H.-B. Lee, J.-S. Park and H.-S. Kim. Application of the sensitivity analysis to the optimal design of the microstrip low-pass filter with defected ground structure. IEEE Trans. Mag. 45, (2009).

【70】J. LehtinenJ. Lehtinen. A framework for precomputed and captured light transport. ACM Trans. Graphics. 26, (2007).

【71】J. C. Finlay and T. H. Foster. Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model. Appl. Opt. 44, (2005).

【72】S. ForestS. Forest. Genetic algorithms-principles of natural-selection applied to computation. Science. 261, (1993).

【73】G. Pu, L. Yi, L. Zhang and W. Hu. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica. 6, (2019).

【74】Z. Yu, H. Cui and X. Sun. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, (2017).

【75】A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam and K. K. Tsia. Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging. Optica. 2, (2015).

【76】D. J. Poxson, M. F. Schubert, F. W. Mont, E. F. Schubert and J. K. Kim. Broadband omnidirectional antireflection coatings optimized by genetic algorithm. Opt. Lett. 34, (2009).

【77】Z. Yu, H. Ccui and X. Sun. Optimal design of integrally gated CNT field-emission devices using a genetic algorithm. Photon. Res. 5, (2017).

【78】L. Sanchis, A. H?kansson, D. López-Zanón, J. Bravo-Abad and J. Sánchez-Dehesa. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities. Appl. Phys. Lett. 84, (2004).

【79】P. Y. Chen, C. H. Chen, J. S. Wu, H. C. Wen and W. P. Wang. Integrated optical devices design by genetic algorithm. Nanotechnology. 18, (2007).

【80】M. Liu, Y. Xie, T. Feng and Y. Xu. Resonant broadband unidirectional light scattering based on genetic algorithm. Opt. Lett. 45, (2020).

【81】K. Liao, T. Gan, X. Hu and Q. Gong. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics. 9, (2020).

【82】Z. Lin, X. Li, R. Zhao, X. Song, Y. Wang and L. Huang. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics. 8, (2019).

【83】Y. Khorrami, D. Fathi and R. C. Rumpf. Fast optimal design of optical components using the cultural algorithm. Opt. Express. 28, (2020).

【84】N. PadhyeN. Padhye. Topology optimization of compliant mechanism using multi-objective particle swarm optimization. (2008).

【85】J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka and A. D. George. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Meth. Eng. 61, (2004).

【86】M. Djavid, S. A. Mirtaheri and M. S. Abrishamian. Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J. Opt. Soc. Am. B. 26, (2009).

【87】C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano and L. Dal Negro. Particle-swarm optimization of broadband nanoplasmonic arrays. Opt. Lett. 35, (2010).

【88】E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis and N. I. Zheludev. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, (2012).

【89】M. Passoni, D. Gerace, L. Carroll and L. C. Andreani. Grating couplers in silicon-on-insulator: the role of photonic guided resonances on lineshape and bandwidth. Appl. Phys. Lett. 110, (2017).

【90】J. C. C. Mak, C. Sideris, J. Jeong, A. Hajimiri and J. K. S. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 41, (2016).

【91】Y. Ha, Y. Guo, M. Pu, F. Zhang, X. Li, X. Ma, M. Xu and X. Luo. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures. Opt. Express. 28, (2020).

【92】B. Wohlfeil, L. Zimmermann and K. Petermann. Optimization of fiber grating couplers on SOI using advanced search algorithms. Opt. Lett. 39, (2014).

【93】N. Zhu, H. J. Sun and N. F. Zhou. Ant colony optimization for dynamic RWA in WDM networks with partial wavelength conversion. Photon. Network Commun. 11, (2006).

【94】I. Saouane, A. Chaker, B. Zaidi and C. Shekhar. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm. Eur. Phys. J. Plus. 132, (2017).

【95】X. Guo, H. Y. Zhou, S. Guo, X. X. Luan, W. K. Cui, Y. F. Ma and L. Shi. Design of broadband omnidirectional antireflection coatings using ant colony algorithm. Opt. Express. 22, (2014).

【96】M. LundyM. Lundy. Convergence of an annealing algorithm. Math. Programm. 34, (1986).

【97】M. ?epinM. ?epin. Assessment of Power System Reliability. : Springer-Verlag London Limited, (2011).

【98】A. Basu and L. N. Fraze. Rapid determination of the critical temperature in simulated annealing inversion. Science. 249, (1990).

【99】K. Hara, T. Iwamoto and K. Kyuma. Optimum design technique for optoelectronic devices using simulated annealing. Electron. Commun. Japan. 79, (1996).

【100】L. D. Khalaf and A. F. Peterson. Performance of the simulated annealing and genetic algorithms for the design of periodic devices. Int. J. Microwave Millimeter-Wave Comput. Aided Eng. 7, (1997).

【101】Y. T. Lu and Y. Q. Zhou. Design of multilayer microwave absorbers using hybrid binary lightning search algorithm and simulated annealing. Photon. Network Commun. 78, (2017).

【102】Z. Xie, T. Lei, F. Li, H. Qiu, Z. Zhang, H. Wang, C. Min, L. Du, Z. Li and X. Yuan. Ultra-broadband on-chip twisted light emitter for optical communications. Light: Sci. Appl. 7, (2018).

【103】Z. Xie, T. Lei, H. Qiu, Z. Zhang, H. Wang and X. Yuan. Broadband on-chip photonic spin Hall element via inverse design. Photon. Res. 8, (2020).

【104】S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. : Prentice-Hall, (2003).

【105】T. Lin, F. Tian, P. Shi, F. S. Chau, G. Zhou, X. Tang and J. Deng. Design of mechanically-tunable photonic crystal split-beam nanocavity. Opt. Lett. 40, (2015).

【106】Q. Quan, P. B. Deotare and M. Loncar. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, (2010).

【107】E. TabliE. Tabli. Metaheuristics: From Design to Implementation. : Wiley, (2009).

【108】H. Youssef, S. M. Sait and H. Adiche. Evolutionary algorithms, simulated annealing and tabu search: a comparative study. Eng. Appl. Artif. Intel. 14, (2001).

【109】D. Gagnon, J. Dumont and L. J. Dubé. Multiobjective optimization in integrated photonics design. Opt. Lett. 38, (2013).

【110】D. Gagnon, J. Dumont, J. Déziel and L. J. Dubé. Optimization of integrated polarization filters. Opt. Lett. 39, (2014).

【111】M. A. Seldowitz, J. P. Allebach and D. W. Sweeney. Synthesis of digital holograms by direct binary search. Appl. Opt. 26, (1987).

【112】B. B. Chhetri, S. Yang and T. Shimomura. Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis. Appl. Opt. 39, (2000).

【113】B. Shen, P. Wang, R. Polson and R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, (2015).

【114】B. Shen, P. Wang and R. Menon. Optimization and analysis of 3D nanostructures for power-density enhancement in ultra-thin photovoltaics under oblique illumination. Opt. Express. 22, (2014).

【115】B. Shen, P. Wang, R. Polson and R. Menon. Ultra-high-efficiency metamaterial polarizer. Optica. 1, (2014).

【116】P. Wang and R. Menon. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics. Opt. Express. 21, (2013).

【117】G. Kim, J. A. Dominguez-Caballero and R. Menon. Design and analysis of multi-wavelength diffractive optics. Opt. Express. 20, (2012).

【118】G. Kim, J. A. Dominguez-Caballero, H. Lee, D. J. Friedman and R. Menon. Increased photovoltaic power output via diffractive spectrum separation. Phys. Rev. Lett. 110, (2013).

【119】T. R. Sales and D. H. Raguin. Multiwavelength operation with thin diffractive elements. Appl. Opt. 38, (1999).

【120】B. Shen, P. Wang, R. Polson and R. Menon. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express. 22, (2014).

【121】G. Kim and R. Menon. An ultra-small three dimensional computational microscope. Appl. Phys. Lett. 105, (2014).

【122】Y. Liu, S. Wang, Y. Wang and W. Liu. Subwavelength polarization splitter–rotator with ultra-compact footprint. Opt. Lett. 44, (2019).

【123】A. Majumder, B. Shen, R. Polson, T. Andrew and R. Menon. An ultra-compact nanophotonic optical modulator using multi-state topological optimization. (2017).

【124】B. Shen, R. Polson and R. Menon. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking. Nat. Commun. 7, (2016).

【125】H. Xie, Y. Liu, S. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He and K. Xu. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photon. Tech. Lett. 32, (2020).

【126】Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He and Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, (2019).

【127】Y. Liu, W. Sun, H. Xie, N. Zhang, K. Xu, Y. Yao, S. Xiao and Q. Song. Very sharp adiabatic bends based on an inverse design. Opt. Lett. 43, (2018).

【128】H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He and K. Xu. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon. Tech. Lett. 32, (2020).

【129】H. Ma, J. Huang, K. Zhang and J. Yang. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt. Commun. 462, (2020).

【130】Y. Deng, Z. Liu, C. Song, P. Hao, Y. Wu, Y. Liu and J. G. Korvink. Topology optimization of metal nanostructures for localized surface plasmon resonances. Struct. Multidiscip. Optim. 53, (2016).

【131】J. Huang, J. Yang, D. Chen, W. Bai, J. Han, Z. Zhang, J. Zhang, X. He, Y. Han and L. Liang. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials. Nanophotonics. 9, (2020).

【132】Y. Chen, Y. Hu, J. Zhao, Y. Deng, Z. Wang, X. Cheng, D. Lei, Y. Deng and H. Duan. Topology optimization‐based inverse design of plasmonic nanodimer with maximum near‐field enhancement. Adv. Funct. Mater. 30, (2020).

【133】C. Y. Kao, S. Osher and E. Yablonovitch. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B. 81, (2005).

【134】S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, (1988).

【135】F. Stanley and J. Osher. Level set methods for optimization problems involving geometry and constraints. J. Comput. Phys. 171, (2001).

【136】A. K. S. Heinrich and H. Niederreiter. Monte Carlo and Quasi-Monte Carlo Methods. : Springer, (2006).

【137】K. BinderK. Binder. Applications of the Monte Carlo method in Statistical Physics. : Springer, (1987).

【138】R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. : Wiley, (2008).

【139】Y. Zhao, X. Cao, J. Gao, Y. Sun, H. Yang, X. Liu, Y. Zhou, T. Han and W. Chen. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Sci. Rep. 6, (2016).

【140】L. BaranyaiL. Baranyai. Laser induced diffuse reflectance imaging – Monte Carlo simulation of backscattering measured on the surface. MethodsX. 7, (2020).

引用该论文

Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu, "Intelligent algorithms: new avenues for designing nanophotonic devices [Invited]," Chinese Optics Letters 19(1), 011301 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF