首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:230001--1)

自组装胶体晶体在微纳光学领域的研究进展

Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

胶体晶体是指由分散的微米级或亚微米级的胶体颗粒形成的具有有序结构的一类物质。自组装技术是胶体晶体制备工艺中一种常用的方法。概述了胶体晶体的基本概念及自组装的相关工艺,针对其在微纳光学领域的应用展开了详细的分析,介绍了不同的研究团队如何将自组装胶体晶体用于彩色打印、全息图、抗反射涂层、光学器件制造中,并对胶体晶体发挥的作用进行了归纳总结。胶体晶体独特的周期性结构赋予了它广阔的应用前景,通过不同的自组装技术提升胶体晶体的质量具有重要的意义。

Abstract

Colloidal crystals are materials that exhibit an ordered structure formed by dispersed micron or submicron colloidal particles. The self-assembly technology is a commonly used method to manufacture colloidal crystals. The basic concepts of colloidal crystals and the related self-assembly processes are outlined in this review. Furthermore, the applications of self-assembled colloidal crystals in case of micro-nano optics are presented in detail. Subsequently, other applications of self-assembled colloidal crystals, such as color printing, holograms, anti-reflective coatings, and optical devices, are presented and the roles of colloidal crystals in those applications are summarized. The unique periodic structure of colloidal crystals ensures its broad application prospects. Therefore, improving the quality of colloidal crystals using various self-assembly techniques is of considerable importance.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.230001

所属栏目:综述

基金项目:国家自然科学基金优秀青年基金、西北工业大学“高峰体验计划”;

收稿日期:2019-04-12

修改稿日期:2019-05-21

网络出版日期:2019-12-01

作者单位    点击查看

谢洪洋:西北工业大学工业工程系, 陕西 西安 710072
余晓畅:西北工业大学空天微纳系统教育部重点实验室, 陕西 西安 710072西北工业大学陕西省微纳机电系统重点实验室, 陕西 西安 710072
高麒淦:西北工业大学环境工程系, 陕西 西安 710072
苏扬:西北工业大学材料科学与工程系, 陕西 西安 710072
孙梓翔:西北工业大学复合材料系, 陕西 西安 710072
虞益挺:西北工业大学空天微纳系统教育部重点实验室, 陕西 西安 710072西北工业大学陕西省微纳机电系统重点实验室, 陕西 西安 710072

联系人作者:虞益挺(yyt@nwpu.edu.cn)

备注:国家自然科学基金优秀青年基金、西北工业大学“高峰体验计划”;

【1】Cong H L, Yu B, Tang J G, et al. Current status and future developments in preparation and application of colloidal crystals [J]. Chemical Society Reviews. 2013, 42(19): 7774-7800.

【2】Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists [J]. Advances in Colloid and Interface Science. 2017, 246: 217-274.

【3】Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours [J]. Chemical Society Reviews. 2016, 45(24): 6698-6724.

【4】Zheng H B, Ravaine S. Bottom-up assembly and applications of photonic materials [J]. Crystals. 2016, 6(5): 54.

【5】Shrestha V R, Lee S S, Kim E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array [J]. Nano Letters. 2014, 14(11): 6672-6678.

【6】Sun C H, Min W L, Linn N C, et al. Templated fabrication of large area subwavelength antireflection gratings on silicon [J]. Applied Physics Letters. 2007, 91(23): 231105.

【7】Fu M, Zhou J, Xiao Q, et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition [J]. Advanced Materials. 2006, 18(8): 1001-1004.

【8】Zhang J T, Smith N, Asher S A. Two-dimensional photonic crystal surfactant detection [J]. Analytical Chemistry. 2012, 84(15): 6416-6420.

【9】Mathger L M. Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus [J]. Journal of Experimental Biology. 2003, 206(20): 3607-3613.

【10】Rassart M, Colomer J F, Tabarrant T, et al. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules [J]. New Journal of Physics. 2008, 10(3): 033014.

【11】Wang M Q, Wang X G. Electrodeposition zinc-oxide inverse opal and its application in hybrid photovoltaics [J]. Solar Energy Materials and Solar Cells. 2008, 92(3): 357-362.

【12】Liu C Y, Long Y, Yang B Q, et al. Facile fabrication of micro-grooves based photonic crystals towards anisotropic angle-independent structural colors and polarized multiple reflections [J]. Science Bulletin. 2017, 62(13): 938-942.

【13】Zhang Y Z, Wang J X, Zhao Y, et al. Photonic crystal concentrator for efficient output of dye-sensitized solar cells [J]. Journal of Materials Chemistry. 2008, 18(23): 2650-2652.

【14】Ramiro-Manzano F, Atienzar P, Rodriguez I, et al. Apollony photonic sponge based photoelectrochemical solar cells Chemical Communications[J]. 0, 2007(3): 242-244.

【15】Nichols J E, Cortiella J, Lee J, et al. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry [J]. Biomaterials. 2009, 30(6): 1071-1079.

【16】Hoi S K, Chen X, Kumar V S, et al. A microfluidic chip with integrated colloidal crystal for online optical analysis [J]. Advanced Functional Materials. 2011, 21(15): 2847-2853.

【17】Lu G, Farha O K, Kreno L E, et al. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing [J]. Advanced Materials. 2011, 23(38): 4449-4452.

【18】Honda M, Kataoka K, Seki T, et al. Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor [J]. Langmuir. 2009, 25(14): 8349-8356.

【19】Dolganova I N, Chernomyrdin N V, Aleksandrova P V, et al. Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography [J]. Journal of Biomedical Optics. 2018, 23(9): 091406.

【20】Mahmood R, Mettry A, Hillier A C. Templating colloidal crystal growth using chirped surface relief gratings [J]. Langmuir. 2018, 34(30): 8828-8838.

【21】Braun P V, Wiltzius P. Macroporous materials: electrochemically grown photonic crystals [J]. Current Opinion in Colloid & Interface Science. 2002, 7(1/2): 116-123.

【22】Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals [J]. Chemistry of Materials. 2000, 12(9): 2721-2726.

【23】Chen J, Dong P T, Di D, et al. Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating [J]. Applied Surface Science. 2013, 270: 6-15.

【24】He Y, Zhu B, Zeng X C, et al. Fabrication of large-area, close-packed, monolayer colloidal crystals via a hybrid method of spin coating and peeling-draining [J]. Thin Solid Films. 2017, 639: 98-106.

【25】Wu Y Z, Chen C, Liu Y X, et al. Fast fabrication of a self-cleaning coating constructed with scallion-like ZnO using a perfect colloidal monolayer enabled by a predictive self-assembly method [J]. Journal of Materials Chemistry A. 2017, 5(12): 5943-5951.

【26】Luo C L, Yang R X, Yan W G, et al. Rapid fabrication of large area binary polystyrene colloidal crystals [J]. Superlattices and Microstructures. 2016, 95: 33-37.

【27】Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors [J]. Energy & Environmental Science. 2014, 7(6): 1850-1865.

【28】Zhao Y J, Xie Z Y, Gu H C, et al. Bio-inspired variable structural color materials [J]. Chemical Society Reviews. 2012, 41(8): 3297-3317.

【29】Wang J X, Fan Q B, Zhang H, et al. Research progress in plasmonic structural colors [J]. Opto-Electronic Engineering. 2017, 44(1): 23-33, 123.
王嘉星, 范庆斌, 张辉, 等. 表面等离激元结构色研究进展 [J]. 光电工程. 2017, 44(1): 23-33, 123.

【30】Ding F, Yang Y Q, Deshpande R A, et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications [J]. Nanophotonics. 2018, 7(6): 1129-1156.

【31】Ellenbogen T, Seo K, Crozier K B. Chromatic plasmonic polarizers for active visible color filtering and polarimetry [J]. Nano Letters. 2012, 12(2): 1026-1031.

【32】Nho H W, Yoon T H. Structural colour of unary and binary colloidal crystals probed by scanning transmission X-ray microscopy and optical microscopy [J]. Scientific Reports. 2017, 7: 12424.

【33】Wang L C. Ng R J H, Dinachali S S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly [J]. ACS Photonics. 2016, 3(4): 627-633.

【34】Park C, Koh K, Jeong U. Structural color painting by rubbing particle powder [J]. Scientific Reports. 2015, 5: 8340.

【35】Zhang L J, Xiong Z, Shan L, et al. Layer-by-layer approach to (2+1)D photonic crystal superlattice with enhanced crystalline integrity [J]. Small. 2015, 11(37): 4910-4921.

【36】Nam H, Song K, Ha D, et al. Inkjet printing based mono-layered photonic crystal patterning for anti-counterfeiting structural colors [J]. Scientific Reports. 2016, 6: 30885.

【37】Lee S Y, Kim H, Kim S H, et al. Uniform coating of self-assembled noniridescent colloidal nanostructures using the Marangoni effect and polymers [J]. Physical Review Applied. 2018, 10(5): 054003.

【38】Jiang H, Sheida A L, Shahbazbegian H, et al. Molding inkjetted silver on nanostructured surfaces for high-throughput structural color printing [J]. ACS Nano. 2016, 10(11): 10544-10554.

【39】Umh H N, Yu S, Kim Y H, et al. Tuning the structural color of a 2D photonic crystal using a bowl-like nanostructure [J]. ACS Applied Materials & Interfaces. 2016, 8(24): 15802-15808.

【40】Meng Z P, Wu S L, Tang B T, et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting [J]. Nanoscale. 2018, 10(30): 14755-14762.

【41】Bai L, Mai V C, Lim Y, et al. Large-scale noniridescent structural color printing enabled by infiltration-driven nonequilibrium colloidal assembly [J]. Advanced Materials. 2018, 30(9): 1705667.

【42】Wu S L, Liu B Q, Su X, et al. Structural color patterns on paper fabricated by inkjet printer and their application in anticounterfeiting [J]. The Journal of Physical Chemistry Letters. 2017, 8(13): 2835-2841.

【43】Lee H S, Shim T S, Hwang H, et al. Colloidal photonic crystals toward structural color palettes for security materials [J]. Chemistry of Materials. 2013, 25(13): 2684-2690.

【44】Keller K, Yakovlev A V, Grachova E V, et al. Inkjet printing of multicolor daylight visible opal holography [J]. Advanced Functional Materials. 2018, 28(21): 1706903.

【45】Stelling C, Bernhardt C, Retsch M. Subwavelength etched colloidal monolayers: a model system for tunable antireflective coatings [J]. Macromolecular Chemistry and Physics. 2015, 216(16): 1682-1688.

【46】Bouabdellaoui M, Checcucci S, Wood T, et al. Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces [J]. Physical Review Materials. 2018, 2(3): 035203.

【47】Sanchez-Sobrado O, Mendes M J, Haque S, et al. Colloidal-lithographed TiO2 photonic nanostructures for solar cell light trapping [J]. Journal of Materials Chemistry C. 2017, 5(27): 6852-6861.

【48】Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation [J]. Science Advances. 2016, 2(4): e1501227.

【49】Wang B M, Gao T C, Leu P W. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays [J]. Nano Energy. 2016, 19: 471-475.

【50】Shen X X, Cai L Z, Dong G Y, et al. Impact of structure design of photonic crystals on LED light extraction efficiency [J]. Chinese Journal of Lasers. 2014, 41(s1): s106006.
沈晓霞, 蔡履中, 董国艳, 等. 光子晶体LED结构优化设计对光提取效率的影响 [J]. 中国激光. 2014, 41(s1): s106006.

【51】Li X H, Zhu P F, Liu G Y, et al. Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays [J]. Journal of Display Technology. 2013, 9(5): 324-332.

【52】Li J Z, Abolghasemi L E, Herman P R, et al. Fabry-Perot etalons using colloidal photonic crystal mirrors [J]. Optics Letters. 2006, 31(24): 3591-3593.

【53】Zhao F, Zhu M W, Zhan P. Microlens arrays prepared via colloidal microsphere templating [J]. Chinese Optics Letters. 2010, 8(5): 508-511.

【54】Wang F, Wang Y W, Fu L P, et al. Preparation and absorption characteristics of highly ordered Au nanoparticle array [J]. Acta Optica Sinica. 2013, 33(s2): s216002.
王飞, 王迎威, 符力平, 等. 有序金纳米颗粒阵列的制备及其吸光特性 [J]. 光学学报. 2013, 33(s2): s216002.

【55】Wang P, Yu X C, Zhu Y C, et al. Batch fabrication of broadband metallic planar microlenses and their arrays combining nanosphere self-assembly with conventional photolithography [J]. Nanoscale Research Letters. 2017, 12(1): 388.

【56】Furumi S, Fudouzi H, Miyazaki H T, et al. Flexible polymer colloidal-crystal lasers with a light-emitting planar defect [J]. Advanced Materials. 2007, 19(16): 2067-2072.

【57】Wang M, Zou C, Sun J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Advanced Functional Materials. 2017, 27(46): 1702261.

【58】Kashiri M, Asgari A. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers [J]. Applied Optics. 2016, 55(8): 2042-2048.

【59】Ma S Z, Feng W L, Peng Z Q, et al. Carbon monoxide gas sensor based on CuO/PANI coated photonic crystal fiber [J]. Laser & Optoelectronics Progress. 2019, 56(5): 050603.
马诗章, 冯文林, 彭志清, 等. 基于氧化铜/聚苯胺包覆光子晶体光纤的一氧化碳传感器 [J]. 激光与光电子学进展. 2019, 56(5): 050603.

【60】Dong Z H, Liu Y, Qin Y Y, et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues [J]. Chinese Journal of Lasers. 2018, 45(8): 0804009.
董子豪, 刘晔, 秦琰琰, 等. 激光诱导液面自组装法制备光纤SERS探针及其农药残留检测应用 [J]. 中国激光. 2018, 45(8): 0804009.

【61】Li J H, Pei L, Wang J S, et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance [J]. Chinese Journal of Lasers. 2019, 46(2): 0210002.
李佳欢, 裴丽, 王建帅, 等. 基于光子晶体光纤表面等离子体共振的温度和磁场双参量传感器 [J]. 中国激光. 2019, 46(2): 0210002.

【62】Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application [J]. Opto-Electronic Engineering. 2018, 45(9): 180168.
潘超, 周俊萍, 倪海彬. 胶体光子晶体修饰光纤及相对湿度检测应用 [J]. 光电工程. 2018, 45(9): 180168.

【63】Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film [J]. Chinese Journal of Lasers. 2018, 45(6): 0610002.
童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析 [J]. 中国激光. 2018, 45(6): 0610002.

【64】Yu X D, Shi L, Han D Z, et al. High quality factor metallodielectric hybrid plasmonic-photonic crystals [J]. Advanced Functional Materials. 2010, 20(12): 1910-1916.

【65】Narasimhan V, Siddique R H, Lee J O, et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices [J]. Nature Nanotechnology. 2018, 13(6): 512-519.

【66】Zhou H W, Liu J S, Liu H T, et al. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber [J]. Applied Optics. 2018, 57(27): 7931-7937.

【67】Sadegh N, Khadem H, Tavassoli S H. High Raman-to-fluorescence ratio of Rhodamine 6G excited with 532 nm laser wavelength using a closely packed, self-assembled monolayer of silver nanoparticles [J]. Applied Optics. 2016, 55(22): 6125-6129.

【68】Yuan Y, Abuhaimed G N, Liu Q K, et al. Self-assembled nematic colloidal motors powered by light [J]. Nature Communications. 2018, 9: 5040.

引用该论文

Xie Hongyang,Yu Xiaochang,Gao Qigan,Su Yang,Sun Zixiang,Yu Yiting. Self-Assembled Colloidal Crystals in Field of Micro-Nano Optics[J]. Laser & Optoelectronics Progress, 2019, 56(23): 230001

谢洪洋,余晓畅,高麒淦,苏扬,孙梓翔,虞益挺. 自组装胶体晶体在微纳光学领域的研究进展[J]. 激光与光电子学进展, 2019, 56(23): 230001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF