首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002008--1)

激光增材制造Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V钛合金组织与疲劳性能研究

Microstructures and Fatigue Properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V Titanium Alloy Fabricated Using Laser Deposition Manufacturing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用同轴送粉激光增材制造工艺制备了Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V钛合金,研究了沉积态及热处理态合金的组织,测试了热处理后合金的疲劳性能,分析了热处理前后合金组织的演化规律,讨论了显微组织、组织缺陷对疲劳性能的影响。研究结果表明:沉积态合金组织由向外延生长的粗大β柱状晶组成,晶内为细长的α片层和晶间β相组成的网篮组织,α相的体积分数明显多于β相;在两相区固溶时效后,组织仍由粗大的柱状晶组成,晶内α相粗化,β相体积分数明显增加;与同工艺条件下制备的Ti-6Al-4V合金相比,热处理Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V合金的疲劳性能在高应力区高于Ti-6Al-4V合金,在低应力区低于Ti-6Al-4V合金;两合金在合金元素含量、相组成、组织尺寸等方面的差异是影响疲劳性能的主要因素;断口分析表明,疲劳源均形核于条状未熔合缺陷及气孔缺陷处,且缺陷直径越大,距离表面越近,应力集中现象越明显,疲劳寿命越低。

Abstract

Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy is prepared using a coaxial powder feeding laser deposition manufacturing process. The microstructures of the alloy in deposited and heat-treated state are studied, and the fatigue properties of the heat-treated alloy are evaluated after heat treatment. The evolution law of microstructure before and after heat treatment is analyzed, and the effects of microstructure and defects on fatigue properties are discussed. Results show that the microstructure of the deposited alloy is composed of thick primary β-columnar crystals, and the interior of the grain is composed of thin lamella α and intergranular β-phases. The volume fraction of the α-phase is significantly more than that of the β-phase. After solution and aging in the (α+β) phase region, the microstructure is still composed of coarse primary columnar crystals, the intracrystalline α-phase coarsens, and the β-phase volume fraction evidently increases. Compared with Ti-6Al-4V alloy samples prepared with the same process, the fatigue performance of the heat-treated experimental alloys is higher in the high-stress zone but lower in the low-stress zone. The difference in alloy element content, phase composition, and microstructure were the main factors affecting the fatigue performance of the deposited and heat-treated alloys. Fracture analysis shows that most of the nucleation sites of the fatigue source are located at the strip-shaped non-fusion defects and the porosity defects, and the larger the diameter of the defects, the closer to the surface, the more obvious the stress concentration, and the lower the fatigue life.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG146.2+3

DOI:10.3788/CJL202047.1002008

所属栏目:激光制造

基金项目:国家重点研发计划、国家自然科学基金、沈阳航空航天大学航空制造工艺数字化国防重点学科实验室开放基金;

收稿日期:2020-05-06

修改稿日期:2020-06-03

网络出版日期:2020-10-01

作者单位    点击查看

钦兰云:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
吴佳宝:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
王伟:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
王超:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
李长富:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
杨光:沈阳航空航天大学航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136

联系人作者:杨光(yangguang@sau.edu.cn)

备注:国家重点研发计划、国家自然科学基金、沈阳航空航天大学航空制造工艺数字化国防重点学科实验室开放基金;

【1】He R J, Wang H M. Deformation behavior in high-frequency fatigue failure of laser melting deposited Ti-6Al-2Zr-Mo-V alloys [J]. Rare Metal Materials and Engineering. 2010, 39(2): 288-291.
贺瑞军, 王华明. 激光熔化沉积Ti-6Al-2Zr-Mo-V合金高周疲劳变形行为 [J]. 稀有金属材料与工程. 2010, 39(2): 288-291.
He R J, Wang H M. Deformation behavior in high-frequency fatigue failure of laser melting deposited Ti-6Al-2Zr-Mo-V alloys [J]. Rare Metal Materials and Engineering. 2010, 39(2): 288-291.
贺瑞军, 王华明. 激光熔化沉积Ti-6Al-2Zr-Mo-V合金高周疲劳变形行为 [J]. 稀有金属材料与工程. 2010, 39(2): 288-291.

【2】Yang G, Ma Y, Wang C, et al. Effects of additive repair on microstructure and mechanical properties of laser additive manufactured TC4 titanium [J]. Chinese Journal of Lasers. 2018, 45(12): 1202002.
杨光, 马玥, 王超, 等. 增材修复对激光沉积制造TC4组织与力学性能的影响 [J]. 中国激光. 2018, 45(12): 1202002.

【3】Zhang M. Research on laser additive manufacturing characteristics of titanium alloy with powder and wire [D]. Harbin: Harbin Institute of Technology. 2013, 15-18.
章敏. 送粉式和送丝式的钛合金激光增材制造特性研究 [D]. 哈尔滨: 哈尔滨工业大学. 2013, 15-18.

【4】Feng X T, Gu H, Zhou S F, et al. Microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer prepared with powder feeding laser additive manufacturing [J]. Chinese Journal of Lasers. 2019, 46(3): 0302003.
冯晓甜, 顾宏, 周圣丰, 等. 送粉式激光增材制造TC4钛合金熔覆层组织及电化学腐蚀行为的研究 [J]. 中国激光. 2019, 46(3): 0302003.

【5】He Y, Qu X H, Wang Y, et al. The development and application of overview of titanium alloy Equipment Manufacturing Technology[J]. 0, 2014(10): 160-161.
何阳, 屈孝和, 王越, 等. 钛合金的发展及应用综述 装备制造技术[J]. 0, 2014(10): 160-161.

【6】Chen X, Yao G, Huang R, et al. Laser welding of TC4 titanium with aluminum insert [J]. Chinese Journal of Lasers. 2013, 40(6): 0603006.
陈曦, 姚刚, 黄锐, 等. TC4钛合金加入铝夹层的激光焊接 [J]. 中国激光. 2013, 40(6): 0603006.

【7】He R J, Wang H M. Microstructure features of laser deposited Ti-6Al-2Zr-Mo-V alloy [J]. Journal of Aeronautical Materials. 2009, 29(6): 18-22.
贺瑞军, 王华明. 激光熔化沉积Ti-6Al-2Zr-Mo-V钛合金组织特征研究 [J]. 航空材料学报. 2009, 29(6): 18-22.

【8】Sterling A J, Torries B, Shamsaei N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V [J]. Materials Science and Engineering A. 2016, 655: 100-112.

【9】Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V [J]. Materials Science and Engineering A. 2014, 598: 327-337.

【10】Razavi S M J, Ferro P, Berto F, et al. Fatigue strength of blunt V-notched specimens produced by selective laser melting of Ti-6Al-4V [J]. Theoretical and Applied Fracture Mechanics. 2018, 97: 376-384.

【11】Li C S. Loss of materials in space environment [J]. Materials Science and Engineering. 1991, 9(1): 1-7.
李承受. 空间环境条件下材料的失效 [J]. 材料科学与工程. 1991, 9(1): 1-7.
Li C S. Loss of materials in space environment [J]. Materials Science and Engineering. 1991, 9(1): 1-7.
李承受. 空间环境条件下材料的失效 [J]. 材料科学与工程. 1991, 9(1): 1-7.

【12】Liu W Y, Zhu Y K, Lin Y H, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy [J]. Materials Review. 2013, 27(18): 108-111.
刘婉颖, 朱毅科, 林元华, 等. 热处理对TC4钛合金显微组织和力学性能的影响 [J]. 材料导报. 2013, 27(18): 108-111.
Liu W Y, Zhu Y K, Lin Y H, et al. Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy [J]. Materials Review. 2013, 27(18): 108-111.
刘婉颖, 朱毅科, 林元华, 等. 热处理对TC4钛合金显微组织和力学性能的影响 [J]. 材料导报. 2013, 27(18): 108-111.

【13】Wang W B, Ma R X, Jing Z C, et al. Effect of solution-aging treatment on microstructure and properties of TC4 fabricated by laser three-dimensional printing [J]. Chinese Journal of Lasers. 2019, 46(10): 1002003.
王文博, 马瑞鑫, 井志成, 等. 固溶时效处理对激光3D打印TC4合金组织与性能的影响 [J]. 中国激光. 2019, 46(10): 1002003.

【14】Wang H G, Leng W C, Li S X, et al. Effects of heat treatment process on microstructure and mechanical properties of TC4 alloy [J]. Hot Working Technology. 2011, 40(10): 181-183.
王悔改, 冷文才, 李双晓, 等. 热处理工艺对TC4钛合金组织和性能的影响 [J]. 热加工工艺. 2011, 40(10): 181-183.

【15】Feng L, Zhao Y Q, Qu H L, et al. Microstructure and property of Ti-6-22-22S alloy dimension bar [J]. Journal of Materials Engineering. 2003, 31(8): 10-12.
冯亮, 赵永庆, 曲恒磊, 等. Ti-6-22-22S合金大棒的显微组织与力学性能 [J]. 材料工程. 2003, 31(8): 10-12.

【16】Wei X, Mao X N, Hou Z M. Study on heat treatment process of Ti-62222s alloy [J]. Hot Working Technology. 2014, 43(4): 205-208.
魏幸, 毛小南, 侯智敏. Ti-62222s合金热处理工艺的研究 [J]. 热加工工艺. 2014, 43(4): 205-208.

【17】Wang H M, Zhang S Q, Tang H B, et al. Research progress on laser rapid prototyping of large titanium alloy structures [J]. Aviation Precision Manufacturing Technology. 2008, 44(6): 28-30.
王华明, 张述泉, 汤海波, 等. 大型钛合金结构激光快速成形技术研究进展 [J]. 航空精密制造技术. 2008, 44(6): 28-30.

【18】Liu F C, Lin X, Huang C P, et al. The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718 [J]. Journal of Alloys and Compounds. 2011, 509(13): 4505-4509.

【19】Zhu Y Y, Tian X J, Li J, et al. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy [J]. Journal of Alloys and Compounds. 2014, 616: 468-474.

【20】Ren H S, Tian X J, Liu D, et al. Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy [J]. Transactions of Nonferrous Metals Society of China. 2015, 25(6): 1856-1864.

【21】Huang X, Cuddy J, Goel N, et al. Effect of heat treatment on the microstructure of a metastable β-titanium alloy [J]. Journal of Materials Engineering and Performance. 1994, 3(4): 560-566.

【22】Ren Y M, Lin X, Huang W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Metal Materials and Engineering. 2017, 46(10): 3160-3168.
任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程. 2017, 46(10): 3160-3168.

【23】Yao Y S, Wang J, Chen Q B, et al. Research status of defects and defect treatment technology for laser additive manufactured products [J]. Laser & Optoelectronics Progress. 2019, 56(10): 100004.
姚燕生, 汪俊, 陈庆波, 等. 激光增材制造产品缺陷及其处理技术研究现状 [J]. 激光与光电子学进展. 2019, 56(10): 100004.

【24】Tao C H. Failure and prevention of aeronautical titanium alloy[M]. Beijing: National Defense Industry Press, 2013.
陶春虎. 航空用钛合金的失效及其预防[M]. 北京: 国防工业出版社, 2013.

【25】Wang Q Y. Accelerated fatigue testing by ultrasonic loading [J]. Journal of Sichuan University (Engineering Science Edition). 2002, 34(3): 6-11.
王清远. 超声加速疲劳实验研究 [J]. 四川大学学报(工程科学版). 2002, 34(3): 6-11.

引用该论文

Qin Lanyun,Wu Jiabao,Wang Wei,Wang Chao,Li Changfu,Yang Guang. Microstructures and Fatigue Properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V Titanium Alloy Fabricated Using Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(10): 1002008

钦兰云,吴佳宝,王伟,王超,李长富,杨光. 激光增材制造Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V钛合金组织与疲劳性能研究[J]. 中国激光, 2020, 47(10): 1002008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF