首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170620--1)

具有特征波长的少模光纤特性及传感应用

Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了一种特殊设计的少模光纤及由少模光纤构成的单模光纤-少模光纤-单模光纤(SFS)传感结构。在对轴激发条件下,少模光纤芯子中仅有基模LP01和第一圆对称高阶模LP02传输,且SFS结构的传输光谱在工作波长范围内有一个特征波长。在特征波长附近相邻两个干涉峰间的波长间距达到最大,且在特征波长处干涉仪的输出光强不随波长变化,这使得特征波长在光谱中唯一且容易识别。理论和实验研究了SFS结构传输光谱的特征波长及其两边干涉条纹随轴向应变、温度、弯曲、液体折射率的传感特性,并将SFS结构用于轴向应变、温度、弯曲、位移、外界折射率和相对湿度的大范围、高灵敏度、多参量同时检测,为解决常规干涉仪存在的测量范围小、输出多值性等问题提供解决方案。

Abstract

This paper reviews a specially designed few-mode fiber and a single mode fiber-few mode fiber-single mode fiber (SFS) sensing structure. Only the fundamental core mode LP01 and the first symmetric high order core mode LP02 are excited in the few-mode fiber under the axial to axial splicing condition, and there is a critical wavelength existing in the transmission spectrum of the SFS structure at the operational wavelength. Near the critical wavelength, the wavelength spacing between adjacent interference peaks reaches maximum, and the output intensity of the interferometer is fixed while the wavelength changes. Therefore, the critical wavelength is exclusive and easy to identify from the transmission spectrum. The sensing characteristics of the critical wavelength and the interference fringes in the transmission spectrum under strain, temperature, bending, and liquid refractive index are studied theoretically and experimentally, and the SFS sensor structure is applied to measure a wide range of sensing parameters including strain, temperature, curvature, displacement, surrounding refractive index, and relative humidity, with the advantages of large measurement ranges, high sensitivity, and multi-parameter measurement. Thus, the current problems of limited measurement range and multi-value outputs existing in the traditional interferometers can be solved.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170620

所属栏目:功能光纤

基金项目:国家自然科学基金、福建省高校产学合作科技重大项目、厦门海洋渔业局科技项目、泉州科学技术局项目;

收稿日期:2019-05-05

修改稿日期:2019-06-06

网络出版日期:2019-09-01

作者单位    点击查看

陆晨旭:厦门大学电子科学与技术学院光波技术研究所, 福建 厦门 361005
董小鹏:厦门大学电子科学与技术学院光波技术研究所, 福建 厦门 361005
苏娟:山东大学海洋研究院, 山东 青岛 266237
雷雪琴:厦门大学电子科学与技术学院光波技术研究所, 福建 厦门 361005

联系人作者:董小鹏(xpd@xmu.edu.cn)

备注:国家自然科学基金、福建省高校产学合作科技重大项目、厦门海洋渔业局科技项目、泉州科学技术局项目;

【1】Liao Y B, Li M and Zhang M. Optical fiber sensing techniques and applications. (2009).
廖延彪, 黎敏, 张敏. 光纤传感技术与应用. (2009).

【2】Lee B H, Kim Y H, Park K S et al. Interferometric fiber optic sensors. Sensors. 12(3), 2467-2486(2012).

【3】Wei C F, Lin G B, Dong X P et al. A tunable polarization-independent comb filter based on high-order mode fiber. Journal of Optics. 15(5), (2013).

【4】Su J, Dong X P and Lu C X. Characteristics of few mode fiber under bending. IEEE Journal of Selected Topics in Quantum Electronics. 22(2), 139-145(2016).

【5】Su J, Dong X P and Lu C X. Property of bent few-mode fiber and its application in displacement sensor. IEEE Photonics Technology Letters. 28(13), 1387-1390(2016).

【6】Su J, Dong X P and Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber. Measurement. 79, 182-187(2016).

【7】Lu C X, Su J, Dong X P et al. Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor. IEEE Sensors Journal. 19(5), 1794-1801(2019).

【8】Lu C X, Dong X P and Su J. Detection of refractive index change from the critical wavelength of an etched few mode fiber. Journal of Lightwave Technology. 35(13), 2593-2597(2017).

【9】Lu C X, Su J, Dong X P et al. Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. Journal of Lightwave Technology. 36(13), 2796-2802(2018).

【10】Lei X Q, Dong X P and Lu C X. Sensitive humidity sensor based on a special dual-mode fiber. IEEE Sensors Journal. 19(7), 2587-2591(2019).

【11】Liu Q, Bi W H, Wang S W et al. Few-mode fiber temperature sensor based on interference between LP01 and LP11 modes. Acta Optica Sinica. 38(2), (2018).
刘强, 毕卫红, 王思文 等. 基于LP01和LP11模式干涉的少模光纤温度传感器. 光学学报. 38(2), (2018).

【12】Tripathi S M, Kumar A, Varshney R K et al. Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures. Journal of Lightwave Technology. 27(13), 2348-2356(2009).

【13】Tripathi S M, Kumar A, Marin E et al. Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2-doped multimode fiber. IEEE Photonics Technology Letters. 22(11), 799-801(2010).

【14】Salik E, Medrano M, Cohoon G et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior. IEEE Photonics Technology Letters. 24(7), 593-595(2012).

【15】Ma L, Qi Y H, Kang Z X et al. All-fiber strain and curvature sensor based on no-core fiber. IEEE Sensors Journal. 14(5), 1514-1517(2014).

【16】Shao M, Han L, Zhao X et al. Liquid level sensor based on in-fiber Michelson interferometer. Acta Optica Sinica. 38(3), (2018).
邵敏, 韩亮, 兆雪 等. 基于在线型光纤迈克耳孙干涉仪的液位传感器. 光学学报. 38(3), (2018).

【17】Zhang N M Y, Li K W, Zhang N et al. . Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Optics Express. 26(22), 29148-29158(2018).

【18】Fu G W, Li Q F, Li Y P et al. Temperature insensitive curvature sensor of photonic crystal fiber based on core-offset splicing and waist-enlarged fiber taper. Acta Optica Sinica. 36(11), (2016).
付广伟, 李颀峰, 李昀璞 等. 温度不敏感的错位熔接-粗锥型光子晶体光纤曲率传感器. 光学学报. 36(11), (2016).

【19】Choi H Y, Kim M J and Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Optics Express. 15(9), 5711-5720(2007).

【20】Martincek I, Pudis D, Kacik D et al. Investigation of intermodal interference of LP01 and LP11 modes in the liquid-core optical fiber for temperature measurements. Optik. 122(8), 707-710(2011).

【21】Lacroix S, Gonthier F, Black R J et al. Tapered-fiber interferometric wavelength response: the achromatic fringe. Optics Letters. 13(5), 395-397(1988).

【22】Vengsarkar A M. -09-05[2019-04-15]. Walker K L. Article comprising a dispersion-compensating optical waveguide: US5448674. (1995).

【23】Kumar A, Jindal R, Varshney R K et al. A fiber-optic temperature sensor based on LP01-LP02 mode interference. Optical Fiber Technology. 6(1), 83-90(2000).

【24】Brugger K. Effect of thermal stress on refractive index in clad fibers. Applied Optics. 10(2), 437-438(1971).

【25】Kumar A, Goel N K and Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference. Journal of Lightwave Technology. 19(3), 358-362(2001).

【26】Xu M G, Reekie L, Dakin J P et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electronics Letters. 30(13), 1085-1087(1994).

【27】Schermer R T and Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE Journal of Quantum Electronics. 43(10), 899-909(2007).

【28】Zhang Y H, Liu H H and Wang D C. Spring manual. 176-177(1997).
张英会, 刘辉航, 王德成. 弹簧手册. 176-177(1997).

引用该论文

Chenxu Lu, Xiaopeng Dong, Juan Su, Xueqin Lei. Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170620

陆晨旭, 董小鹏, 苏娟, 雷雪琴. 具有特征波长的少模光纤特性及传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170620

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF