首页 > 论文 > 中国激光 > 47卷 > 9期(pp:901001--1)

准分子激光器中放电冲击波的仿真研究

Simulation of Discharge Shock Waves in Excimer Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分析了准分子激光器放电腔内放电冲击波能量来源的计算方法,利用Fluent软件对放电冲击波物理过程进行了二维仿真,揭示了300 μs内横向冲击波和纵向冲击波的演化过程,获得了此过程中气体速度、密度、压力和温度等关键参数的变化规律。对仿真结果进行分析,得出了高重复频率放电腔设计中应注意的关键位置以及处理方法,提出了选取放电腔尺寸和边界等参数时的参考依据。

Abstract

The calculation method of shock wave energy source in discharge chamber of excimer laser was analyzed. Two-dimensional simulation of the physical process of discharge shock wave was carried out by Fluent software. The evolution process of transverse and longitudinal shock waves in 300 μs was revealed. In this process, the distributions of gas velocity, density, pressure, and temperature are obtained. Based on the analysis of the simulation results, the key points in the design of high repetition rate discharge chamber and the processing methods are given. The reference basis for choosing parameters such as the size and boundary of discharge chamber is put forward.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.2

DOI:10.3788/CJL202047.0901001

所属栏目:激光器件与激光物理

基金项目:国家科技重大专项;

收稿日期:2020-03-02

修改稿日期:2020-04-10

网络出版日期:2020-09-01

作者单位    点击查看

刘斌:中国科学院微电子研究所光电技术研发中心, 北京 100029中国科学院大学, 北京 100049北京科益虹源光电技术有限公司, 北京 100176
丁金滨:中国科学院微电子研究所光电技术研发中心, 北京 100029北京科益虹源光电技术有限公司, 北京 100176
周翊:中国科学院微电子研究所光电技术研发中心, 北京 100029北京科益虹源光电技术有限公司, 北京 100176
江锐:中国科学院微电子研究所光电技术研发中心, 北京 100029北京科益虹源光电技术有限公司, 北京 100176
王宇:中国科学院微电子研究所光电技术研发中心, 北京 100029中国科学院大学, 北京 100049

联系人作者:丁金滨(dingjinbin@ime.ac.cn); 王宇(yuwang@ime.ac.cn);

备注:国家科技重大专项;

【1】Lou Q H, Xu J, Fu S F, et al. Pulsed gas-discharge lasers[M]. Beijing: Science Press, 1993, 238-293.
楼祺洪, 徐捷, 傅淑芬, 等. 脉冲放电气体激光器[M]. 北京: 科学出版社, 1993, 238-293.

【2】Yu Y S, You L B, Liang X, et al. Progress of excimer lasers technology [J]. Chinese Journal of Lasers. 2010, 37(9): 2253-2270.
余吟山, 游利兵, 梁勖, 等. 准分子激光技术发展 [J]. 中国激光. 2010, 37(9): 2253-2270.

【3】Liu B, Ding J B, Wang K B, et al. Experimental study of characteristics of discharge shock waves in high-repetition-rate excimer lasers [J]. Chinese Journal of Lasers. 2019, 46(12): 1201001.
刘斌, 丁金滨, 王魁波, 等. 高重复频率准分子激光器中放电冲击波特性的实验研究 [J]. 中国激光. 2019, 46(12): 1201001.

【4】Imada G, Yamanoi H, Suzuki M, et al. Influence of shock waves on excitation discharge for TEA gas lasers . [C]∥XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. 2001.

【5】Imada G, Masuda W, Yatsui K. Characteristics of excitation discharge of an excimer laser in gas density depletion [J]. Proceedings of SPIE. 1998, 3574: 653-658.

【6】Imada G, Shinkai T, Masuda W, et al. Influence of floating particles on excitation discharge for TEA gas lasers [J]. Proceedings of SPIE. 2001, 4184: 365-368.

【7】Hogge H D. Flow and acoustics in pulsed excimer lasers . [C]∥AIAA Conference on Fluid Dynamics of High Power Lasers. 1978.

【8】Witteman W J . Analysis of high-power XeCl excimer laser [J]. Proceedings of SPIE. 1996.

【9】Zeitoun D, Bessafi M, Fontaine B, et al. Numerical computation of unsteady two-dimensional flow in excimer laser [J]. Proceedings of SPIE. 1989, 1031: 423-427.

【10】Vuillon J, Zeitoun D. Numerical study of 2D and 3D flowfields in a high-power pulsed chemical laser [J]. International Journal of Numerical Methods for Heat & Fluid Flow. 1997, 7(1): 24-41.

【11】Hori T, Yabu T, Ishihara T, et al. Feasibility study of 6 kHz ArF excimer laser for 193 nm immersion lithography [J]. Proceedings of SPIE. 2005, 5754: 1285-1292.

【12】Zhu N W, Fang X D. FLUENT-based numerical simulation of gas flow field of excimer laser [J]. Chinese Journal of Lasers. 2016, 43(9): 0901007.
朱能伟, 方晓东. 基于FLUENT的准分子激光器气体流场数值仿真 [J]. 中国激光. 2016, 43(9): 0901007.

【13】Luan K P, Ye J F, Wang S, et al. Flowfield measurements in gain zone of XeF(C-A) gas laser based on particle image velocimetry [J]. Chinese Journal of Lasers. 2019, 46(2): 0204007.
栾昆鹏, 叶景峰, 王晟, 等. 基于粒子图像测速的XeF(C-A)气体激光器增益区流场测量 [J]. 中国激光. 2019, 46(2): 0204007.

【14】Liu H F, Zhou W, Cai X S, et al. Three-dimensional particle tracking velocimetry based on light field imaging [J]. Acta Optica Sinica. 2020, 40(1): 0111014.
刘慧芳, 周骛, 蔡小舒, 等. 基于光场成像的三维粒子追踪测速技术 [J]. 光学学报. 2020, 40(1): 0111014.

【15】Wang F J. Analysis of computational fluid dynamics: Theory and application of CFD[M]. Beijing: Tsinghua University Press, 2004, 7-11.
王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004, 7-11.

【16】Kemhadjian H. Microlithography: science and technology International Journal of Electrical Engineering Education[J]. 0, 2007(3): 275-276.

【17】Imada G, Sato Y, Yoshida H, et al. Observation of excitation discharge on an excimer laser in nonuniform gas density distribution . [C]∥IEEE International Pulsed Power Conference. 1997.

引用该论文

Liu Bin,Ding Jinbin,Zhou Yi,Jiang Rui,Wang Yu. Simulation of Discharge Shock Waves in Excimer Laser[J]. Chinese Journal of Lasers, 2020, 47(9): 0901001

刘斌,丁金滨,周翊,江锐,王宇. 准分子激光器中放电冲击波的仿真研究[J]. 中国激光, 2020, 47(9): 0901001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF