首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1457-1467)

Review of exceptional point-based sensors

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Exceptional points are spectral singularities in open quantum and wave systems that exhibit a strong spectral response to perturbations. This feature can be exploited for a new generation of sensors. This paper explains the basic mechanism and comprehensively reviews the recent developments. In particular, it highlights the influence of classical noise and fundamental limitations due to quantum noise.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.396115

所属栏目:Physical Optics

收稿日期:2020-04-29

录用日期:2020-06-27

网络出版日期:2020-06-30

作者单位    点击查看

Jan Wiersig:Institut für Physik, Otto-von-Guericke-Universit?t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany (jan.wiersig@ovgu.de)

联系人作者:Jan Wiersig(jan.wiersig@ovgu.de)

【1】W. P. ReinhardtW. P. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223-255(1982).

【2】C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer and A. Zeilinger. Tailored complex potentials and Friedel’s law in atom optics. Phys. Rev. Lett. 79, 3327-3330(1997).

【3】M. V. Berry and D. H. J. O’Dell. Diffraction by volume gratings with imaginary potentials. J. Phys. A. 31, 2093-2101(1998).

【4】G. L. Celardo and L. Kaplan. Superradiance transition in one-dimensional nanostructures: an effective non-Hermitian Hamiltonian formalism. Phys. Rev. B. 79, (2009).

【5】G. E. Mitchell, A. Richter and H. A. Weidenmüller. Random matrices and chaos in nuclear physics: nuclear reactions. Rev. Mod. Phys. 82, 2845-2901(2010).

【6】Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong and Y.-F. Xiao. Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems. Sci. Bull. 63, 1096-1100(2018).

【7】H.-J. St?ckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl and I. Rotter. Effective Hamiltonian for a microwave billiard with attached waveguide. Phys. Rev. E. 65, (2002).

【8】C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev and D. Kip. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192-195(2010).

【9】J. WiersigJ. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A. 84, (2011).

【10】C. M. Bender and S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243-5246(1998).

【11】A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides and U. Peschel. Parity-time synthetic photonic lattices. Nature. 488, 167-171(2012).

【12】B. Peng, ?. K. ?zdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender and L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394-398(2014).

【13】S. Scheel and A. Szameit. PT-symmetric photonic quantum systems with gain and loss do not exit. Eur. Phys. Lett. 122, (2018).

【14】R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani and D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11-19(2018).

【15】L. Feng, R. El-Ganainy and L. Ge. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics. 11, 752-762(2017).

【16】T. KatoT. Kato. Perturbation Theory for Linear Operators. : Springer, (1966).

【17】W. D. HeissW. D. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E. 61, 929-932(2000).

【18】M. V. BerryM. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039-1047(2004).

【19】W. D. HeissW. D. Heiss. Exceptional points of non-Hermitian operators. J. Phys. A. 37, 2455-2464(2004).

【20】C. Dembowski, H.-D. Gr?f, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld and A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787-790(2001).

【21】C. Dembowski, B. Dietz, H.-D. Gr?f, H. L. Harney, A. Heine, W. D. Heiss and A. Richter. Encircling an exceptional point. Phys. Rev. E. 69, (2004).

【22】B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Sch?fer and C. A. Stafford. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E. 75, (2007).

【23】S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee and K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, (2009).

【24】J. Zhu, ?. K. ?zdemir, L. He and L. Yang. Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Express. 18, 23535-23543(2010).

【25】B. Peng, ?. K. ?zdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter and L. Yang. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA. 113, 6845-6850(2016).

【26】S. Richter, H.-G. Zirnstein, J. Zú?iga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann and R. Schmidt-Grund. Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity. Phys. Rev. Lett. 123, (2019).

【27】M.-A. Miri and A. Alù. Exceptional points in optics and photonics. Science. 363, (2019).

【28】?. K. ?zdemir, S. Rotter, F. Nori and L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783-798(2019).

【29】J. WiersigJ. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, (2014).

【30】J. Zhu, ?. K. ?zdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen and L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics. 4, 46-49(2010).

【31】L. He, ?. K. ?zdemir, J. Zhu, W. Kim and L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428-432(2011).

【32】F. Vollmer and L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics. 1, 267-291(2012).

【33】W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich and M. O. Scully. The ring laser gyro. Rev. Mod. Phys. 57, 61-104(1985).

【34】S. Sunada and T. Harayama. Design of resonant microcavities: application to optical gyroscopes. Opt. Express. 15, 16245-16254(2007).

【35】L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky and V. Jacques. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, (2014).

【36】E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja and J. Tamayo. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol. 5, 641-645(2010).

【37】Y. Liu, L. Zhang, J. A. R. Williams and I. Bennio. Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating. IEEE Photon. Technol. Lett. 12, 531-533(2000).

【38】J. WiersigJ. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A. 93, (2016).

【39】J. Wiersig, D. Christodoulides and J. Yang. Non-Hermitian effects due to asymmetric backscattering of light in whispering-gallery microcavities. Parity-time Symmetry and Its Applications. : Springer, 155-184(2018).

【40】A. Mazzei, S. G?tzinger, L. de S. Menezes, G. Zumofen, O. Benson and V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett. 99, (2007).

【41】J. WiersigJ. Wiersig. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res. 1, (2019).

【42】L. He, ?. K. ?zdemir, J. Zhu and L. Yang. Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A. 82, (2010).

【43】J. Knittel, T. G. McRae, K. H. Lee and W. P. Bowen. Interferometric detection of mode splitting for whispering-gallery mode biosensors. Appl. Phys. Lett. 97, (2010).

【44】U. Kuhl, R. H?hmann, J. Main and H.-J. St?ckmann. Resonance widths in open microwave cavities studied by harmonic inversion. Phys. Rev. Lett. 100, (2008).

【45】W. LangbeinW. Langbein. No exceptional precision of exceptional-point sensors. Phys. Rev. A. 98, (2018).

【46】K. J. VahalaK. J. Vahala. Optical microcavities. Nature. 424, 839-846(2003).

【47】H. Cao and J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61-111(2015).

【48】L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao and Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 25, 5616-5620(2013).

【49】J. Wiersig, S. W. Kim and M. Hentschel. Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A. 78, (2008).

【50】J. Wiersig, A. Ebersp?cher, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel and H. Schomerus. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A. 84, (2011).

【51】J. WiersigJ. Wiersig. Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A. 89, (2014).

【52】S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song and H. Cao. Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photon. Rev. 12, (2018).

【53】W. D. Heiss and H. L. Harney. The chirality of exceptional points. Eur. Phys. J. D. 17, 149-151(2001).

【54】C. Dembowski, B. Dietz, H.-D. Gr?f, H. L. Harney, A. Heine, W. D. Heiss and A. Richter. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett. 90, (2003).

【55】C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone and L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334-340(2020).

【56】J. Kullig and J. Wiersig. High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities. Phys. Rev. A. 100, (2019).

【57】J. Kullig, M. Yi, C.-H. Hentschel and J. Wiersig. Exceptional points of third-order in a layered optical microdisk cavity. New J. Phys. 20, (2018).

【58】A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan and D. Christodoulides. Enhanced sensitivity in parity-time-symmetric microcavity sensors. Advanced Photonics. : Optical Society of America, (2015).

【59】W. Chen, J. Zhang, B. Peng, ?. K. ?zdemir, X. Fan and L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res. 6, A23-A30(2018).

【60】S. Zhang, Z. Yong, Y. Zhang and S. He. Parity-time symmetry breaking in coupled nanobeam cavities. Sci. Rep. 6, (2015).

【61】Z.-P. Liu, J. Zhang, ?. K. ?zdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori and Y.-X. Liu. Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett. 117, (2016).

【62】J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides and M. Khajavikhan. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. Opt. Lett. 42, 1556-1559(2017).

【63】S. SunadaS. Sunada. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point. Phys. Rev. A. 96, (2017).

【64】R. Sarma, L. Ge, J. Wiersig and H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett. 114, (2015).

【65】B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang and P. Wu. High-performance terahertz sensing at exceptional points in a bilayer structure. Adv. Theory Simul. 1, (2018).

【66】A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang and X. Zhang. Parity-time symmetry based on resonant optical tunneling effect for biosensing. Opt. Commun. 475, (2020).

【67】M. Goryachev, B. McAllister and M. E. Tobar. Probing dark universe with exceptional points. Phys. Dark Univ. 23, (2018).

【68】J. Liu, L. Chen and K.-D. Zhu. Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems. (2019).

【69】J. Liu, L. Chen, F. He and K.-D. Zhu. Gravitational waves detection with exceptional points in micro cavities. (2019).

【70】Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, ?. K. ?zdemir and R. El-Ganainy. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, (2019).

【71】Q. Zhong, S. Nelson, ?. K. ?zdemir and R. El-Ganainy. Controlling direction absorption with chiral exceptional surfaces. Opt. Lett. 44, 5242-5245(2019).

【72】S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang and C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun. 10, (2019).

【73】W. Chen, ?. K. ?zdemir, G. Zhao, J. Wiersig and L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature. 548, 192-196(2017).

【74】H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides and M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature. 548, 187-191(2017).

【75】H. Zhao, Z. Chen, R. Zhao and L. Feng. Exceptional points engineered glass slide for microscopic thermal mapping. Nat. Commun. 9, (2018).

【76】M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung and P.-Y. Chen. Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors. IEEE Sens. J. 18, 9548-9555(2018).

【77】P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy and A. Alù. Generalized parity-time symmetry condition for enhanced sensor telemetry. Nat. Electron. 1, 297-304(2018).

【78】Z. Dong, Z. Li, F. Yang, C.-W. Qiu and J. S. Ho. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335-342(2019).

【79】C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang and H. Chen. Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system. Opt. Express. 27, 27562-27572(2019).

【80】M. P. Hokmabadi, A. Schumer, D. N. Christodoulides and M. Khajavikhan. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature. 576, 70-74(2019).

【81】Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan and K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature. 576, 65-69(2019).

【82】J. MillerJ. Miller. Exceptional points make for exceptional sensors. Phys. Today. 70, 23-26(2017).

【83】L. Ge, Y. D. Chong and A. D. Stone. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A. 85, (2012).

【84】J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo and B. Kanté. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 16, 462-468(2020).

【85】N. A. Mortensen, P. A. D. Gon?alves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis and C. Wolff. Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems. Optica. 5, 1342-1346(2018).

【86】C. Wolff, C. Tserkezis and N. A. Mortensen. On the time evolution at a fluctuating exceptional point. Nanophotonics. 8, 1319-1326(2019).

【87】Z. Xiao, H. Li, T. Kottos and A. Alù. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett. 123, (2019).

【88】J. WiersigJ. Wiersig. Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies. Phys. Rev. A. 101, (2020).

【89】F. Minganti, A. Miranowicz, R. W. Chhajlany and F. Nori. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps. Phys. Rev. A. 100, (2019).

【90】H.-K. Lau and A. A. Clerk. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, (2018).

【91】M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone and L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett. 123, (2019).

【92】C. Chen, L. Jin and R.-B. Liu. Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New J. Phys. 21, (2019).

【93】S. SunadaS. Sunada. Enhanced response of non-Hermitian photonic systems near exceptional points. Phys. Rev. A. 97, (2018).

【94】H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh and K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun. 11, (2020).

【95】K. PetermannK. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron. 15, 566-570(1979).

【96】A. E. SiegmanA. E. Siegman. Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers. Phys. Rev. A. 39, 1253-1263(1989).

【97】A. E. SiegmanA. E. Siegman. Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators. Phys. Rev. A. 39, 1264-1268(1989).

【98】H. SchomerusH. Schomerus. Excess quantum noise due to mode orthogonality in dielectric microresonators. Phys. Rev. A. 79, (2009).

【99】M. V. BerryM. V. Berry. Mode degeneracies and the Petermann excess-noise factor for unstable lasers. J. Mod. Opt. 50, 63-81(2003).

【100】M. Naghiloo, M. Abbasi, Y. N. Joglekar and K. W. Murch. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232-1236(2019).

引用该论文

Jan Wiersig, "Review of exceptional point-based sensors," Photonics Research 8(9), 1457-1467 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF