首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1580-1585)

Extraction of internal phase motions in femtosecond soliton molecules using an orbital-angular-momentum-resolved method [Editors' Pick]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Internal motions in femtosecond soliton molecules provide insight into universal collective dynamics in various nonlinear systems. Here we introduce an orbital-angular-momentum (OAM)-resolved method that maps the relative phase motion within a femtosecond soliton molecule into the rotational movement of the interferometric beam profile of two optical vortices. By this means, long-term relative phase evolutions of doublet and triplet soliton molecules generated in an all-polarization-maintaining mode-locked Er-fiber laser are revealed. This simple and practical OAM-resolved method represents a promising way to directly visualize the complex phase dynamics in a diversity of multisoliton structures.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.398316

所属栏目:Lasers and Laser Optics

基金项目:National Natural Science Foundation of China10.13039/501100001809; The European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant; The Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy within the Cluster of ExcellencePhoenixD;

收稿日期:2020-06-02

录用日期:2020-08-01

网络出版日期:2020-08-04

作者单位    点击查看

Yuwei Zhao:Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Jintao Fan:Institut für Quantenoptik, Leibniz Universit?t Hannover, Welfengarten 1, 30167 Hannover, Germany;Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167 Hannover, Germany
Youjian Song:Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;e-mail: yjsong@tju.edu.cn
Uwe Morgner:Institut für Quantenoptik, Leibniz Universit?t Hannover, Welfengarten 1, 30167 Hannover, Germany;Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167 Hannover, Germany;Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
Minglie Hu:Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;e-mail: huminglie@tju.edu.cn

联系人作者:Youjian Song(yjsong@tju.edu.cn); Minglie Hu(huminglie@tju.edu.cn);

备注:National Natural Science Foundation of China10.13039/501100001809; The European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant; The Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy within the Cluster of ExcellencePhoenixD;

【1】T. Dauxois and M. Peyrard. Physics of Solitons. : Cambridge University, (2006).

【2】K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda and P. Grelu. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, (2017).

【3】P. Grelu and N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics. 6, 84-92(2012).

【4】Y. Song, X. Shi, C. Wu, D. Tang and H. Zhang. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, (2019).

【5】M. Liu, Z. Wei, H. Li, T. Li, A. Luo, W. Xu and Z. Luo. Visualizing the ‘invisible’ soliton pulsation in an ultrafast laser. Laser Photon. Rev. 14, (2020).

【6】N. N. Akhmediev, A. Ankiewicz and J. M. Soto-Crespo. Multisoliton solutions of the complex Ginzburg-Landau equation. Phys. Rev. Lett. 79, 4047-4051(1997).

【7】L. Li, H. Huang, L. Su, D. Shen, D. Tang, M. Klimczak and L. Zhao. Various soliton molecules in fiber systems. Appl. Opt. 58, 2745-2753(2019).

【8】M. Pang, W. He, X. Jiang and P. St.J.Russell. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics. 10, 454-458(2016).

【9】N. Akhmediev, A. Ankiewicz and J. Soto-Crespo. Stable soliton pairs in optical transmission lines and fiber lasers. J. Opt. Soc. Am. B. 15, 515-523(1998).

【10】V. Afanasjev and N. Akhmediev. Soliton interaction and bound states in amplified-damped fiber systems. Opt. Lett. 20, 1970-1972(1995).

【11】H. Kitano and S. Kinoshita. Stable multipulse generation from a self-mode-locked Ti:sapphire laser. Opt. Commun. 157, 128-134(1998).

【12】F. M. Mitschke and L. F. Mollenauer. Experimental observation of interaction forces between solitons in optical fibers. Opt. Lett. 12, 355-357(1987).

【13】M. Stratmann, T. Pagel and F. Mitschke. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, (2005).

【14】R. Weill, A. Bekker, V. Smulakovsky, B. Fischer and O. Gat. Noise-mediated Casimir-like pulse interaction mechanism in lasers. Optica. 3, 189-192(2016).

【15】A. Hause, H. Hartwig, B. Seifert, H. Stolz, M. B?hm and F. Mitschke. Phase structure of soliton molecules. Phys. Rev. A. 75, (2007).

【16】F. Meng, C. Lapre, C. Billet, G. Genty and J. M. Dudley. Instabilities in a dissipative soliton-similariton laser using a scalar iterative map. Opt. Lett. 45, 1232-1235(2020).

【17】A. Haboucha, H. Leblond, M. Salhi, A. Komarov and F. Sanchez. Analysis of soliton pattern formation in passively mode-locked fiber lasers. Phys. Rev. A. 78, (2008).

【18】A. Zavyalov, R. Iliew, O. Egorov and F. Lederer. Discrete family of dissipative soliton pairs in mode-locked fiber lasers. Phys. Rev. A. 79, (2009).

【19】D. Tang, B. Zhao, L. Zhao and H. Tam. Soliton interaction in a fiber ring laser. Phys. Rev. E. 72, (2005).

【20】H. Shi, Y. Song, C. Wang, L. Zhao and M. Hu. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule. Opt. Lett. 43, 1623-1626(2018).

【21】P. Ryczkowski, M. N?rhi, C. Billet, J.-M. Merolla, G. Genty and J. M. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics. 12, 221-227(2018).

【22】Y. Wei, B. Li, P. Feng, J. Kang and K. K. Wong. Broadband dynamic spectrum characterization based on gating-assisted electro-optic time lens. Appl. Phys. Lett. 114, (2019).

【23】M. Liu, H. Li, A. Luo, H. Cui, W. Xu and Z. Luo. Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser. J. Opt. 20, (2018).

【24】G. Herink, F. Kurtz, B. Jalali, D. R. Solli and C. Ropers. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science. 356, 50-54(2017).

【25】X. Liu, X. Yao and Y. Cui. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, (2018).

【26】J. Peng and H. Zeng. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photon. Rev. 12, (2018).

【27】S. Hamdi, A. Coillet and P. Grelu. Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser. Opt. Lett. 43, 4965-4968(2018).

【28】Z. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda and P. Grelu. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10, (2019).

【29】A. F. Runge, N. G. Broderick and M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica. 2, 36-39(2015).

【30】Y. Luo, R. Xia, P. P. Shum, W. Ni, Y. Liu, H. Q. Lam, Q. Sun, X. Tang and L. Zhao. Real-time dynamics of soliton triplets in fiber lasers. Photon. Res. 8, 884-891(2020).

【31】X. Liu, D. Popa and N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett. 123, (2019).

【32】Y. Luo, J. Cheng, B. Liu, Q. Sun, L. Li, S. Fu, D. Tang, L. Zhao and D. Liu. Group-velocity-locked vector soliton molecules in fiber lasers. Sci. Rep. 7, (2017).

【33】Y. Zhao, J. Fan, H. Shi, Y. Li, Y. Song and M. Hu. Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser. Opt. Express. 27, 8808-8818(2019).

【34】A. Asahara, S. Shoji, K. Kondo, Y. Wang and K. Minoshima. Coherent spatiotemporal phase control by combining optical frequency combs and optical vortices. CLEO: Science and Innovations. : Optical Society of America, (2018).

【35】A. Asahara, S. Shoji and K. Minoshima. Optical combs and optical vortices combined for spatiotemporal manipulation of light and matter. (2020).

【36】D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci and A. Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics. 10, 327-332(2016).

【37】C. Yang, Z. Zhou, Y. Li, Y. Li, S. Liu, S. Liu, Z. Xu, G. Guo and B. Shi. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Opt. Lett. 44, 219-222(2019).

【38】J. T. Fan, J. Zhao, L. P. Shi, N. Xiao and M. L. Hu. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator. Adv. Photon. 2, (2020).

【39】L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. Bryant and K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science. 292, 912-914(2001).

【40】S. S. H. U. Gamage and J. Lasenby. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech. 35, 87-93(2002).

【41】B. Orta?, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer and A. Tünnermann. Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser. Opt. Lett. 35, 1578-1580(2010).

引用该论文

Yuwei Zhao, Jintao Fan, Youjian Song, Uwe Morgner, and Minglie Hu, "Extraction of internal phase motions in femtosecond soliton molecules using an orbital-angular-momentum-resolved method," Photonics Research 8(10), 1580-1585 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF