首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1005001--1)

基于六方氮化硼材料的光栅型中红外线吸收器

Grating-Type Mid-Infrared Absorber Based on Hexagonal Boron Nitride Material

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来,电磁波吸收器[1]的发展十分迅速。通过改变设计的结构和选择的材料,电磁波吸收器可以在特定的波段内对入射的电磁波实现有效吸收。随着研究的不断深入,在中红外波段实现对电磁波的完美吸收已成为电磁波吸收领域的一个研究热点。中红外电磁波吸收器[2]一般工作在2.5~25 μm的波段范围内,其在太阳能电池[3]、传感器[4]和电磁隐身[5]等方面具有极大的应用潜力。

Abstract

Herein, a mid-infrared absorber based on the hexagonal boron nitride material is designed. The absorber is an one-dimensional grating comprising a truncated pyramid-type unit structure whose absorption mechanism is based on magnetic polaritons and Fabry-Perot cavity resonance effect. The influences of the structural parameters, working wavelength, and incident angle of the absorber on absorption performance are analyzed by using the finite element algorithm. Results show that,under optimized structural parameters, the absorption of the absorber can reach 80% or more in the range of 5.6-14.5 μm when the incident angle range is 0° -75°. The absorber designed herein is expected to be applied to the sensing and stealth aspects at the mid-infrared band.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1005001

所属栏目:衍射与光栅

基金项目:国家自然科学基金、国家基础科学人才培养基金;

收稿日期:2019-04-30

修改稿日期:2019-06-12

网络出版日期:2019-10-01

作者单位    点击查看

陈岳飞:山西大学物理电子工程学院, 山西 太原 030006
薛文瑞:山西大学物理电子工程学院, 山西 太原 030006
赵晨:山西大学物理电子工程学院, 山西 太原 030006
张晨:山西大学物理电子工程学院, 山西 太原 030006
李昌勇:山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:薛文瑞(wrxue@sxu.edu.cn)

备注:国家自然科学基金、国家基础科学人才培养基金;

【1】Liao Y L and Zhao Y. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber. Optics Express. 25(25), 32080-32089(2017).

【2】Huang Y Q, Li Y, Li Z P et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array. Acta Optica Sinica. 39(3), (2019).
黄雅琴, 李毅, 李政鹏 等. W/VO2方形纳米柱阵列可调中红外宽频吸收器. 光学学报. 39(3), (2019).

【3】Zhu L, Wang Y, Xiong G et al. Design and absorption characteristics of broadband nano-metamaterial solar absorber. Acta Optica Sinica. 37(9), (2017).
朱路, 王杨, 熊广 等. 宽波段纳米超材料太阳能吸收器的设计及其吸收特性. 光学学报. 37(9), (2017).

【4】Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters. 10(7), 2342-2348(2010).

【5】Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 314(5801), 977-980(2006).

【6】Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters. 12(3), 1443-1447(2012).

【7】Chen B, Li Q, Ghosh P et al. Tunable mid-infrared absorption of metamaterial integrated with graphene. Journal of Physics: Conference Series. 844, (2017).

【8】Huang L, Hu G H, Deng C Y et al. Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves. Optics Express. 26(22), 29192-29202(2018).

【9】Cao S, Wang T S, Sun Q et al. Graphene-silver hybrid metamaterial for tunable and high absorption at mid-infrared waveband. IEEE Photonics Technology Letters. 30(5), 475-478(2018).

【10】Kumar A, Low T, Fung K H et al. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Letters. 15(5), 3172-3180(2015).

【11】Lee B J, Wang L P and Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express. 16(15), 11328-11336(2008).

【12】Baranov D G, Edgar J H, Hoffman T et al. Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Physical Review B. 92(20), (2015).

【13】Wu J P, Jiang L Y, Guo J et al. Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Optics Express. 24(15), 17103-17114(2016).

【14】Zhao B and Zhang Z M. Perfect mid-infrared absorption by hybrid phonon-plasmon polaritons in hBN/metal-grating anisotropic structures. International Journal of Heat and Mass Transfer. 106, 1025-1034(2017).

【15】Kan Y H, Zhao C Y and Zhang Z M. Compact mid-infrared broadband absorber based on hBN/metal metasurface. International Journal of Thermal Sciences. 130, 192-199(2018).

【16】Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF. Acta Optica Sinica. 38(1), (2018).
陈曦, 薛文瑞, 赵晨 等. 基于LiF和NaF的超宽带红外吸收器. 光学学报. 38(1), (2018).

【17】Shu S W, Li Z and Li Y Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Optics Express. 21(21), 25307-25315(2013).

【18】Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters. 100(10), (2012).

【19】Korobkin D, Urzhumov Y and Shvets G. Enhanced near-field resolution in midinfrared using metamaterials. Journal of the Optical Society of America B. 23(3), 468-478(2006).

【20】Jacob Z. Hyperbolic phonon-polaritons. Nature Materials. 13(12), 1081-1083(2014).

【21】Dai S, Ma Q, Liu M K et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotechnology. 10(8), 682-686(2015).

【22】Handbook on physical properties of semiconductors: volume 2: part 1. 43-47(2014).
Adachi S and Sadao Adachi. 半导体物理性能手册: 第2卷: 上册. 43-47(2014).

引用该论文

Yuefei Chen,Wenrui Xue,Chen Zhao,Chen Zhang,Changyong Li. Grating-Type Mid-Infrared Absorber Based on Hexagonal Boron Nitride Material[J]. Acta Optica Sinica, 2019, 39(10): 1005001

陈岳飞,薛文瑞,赵晨,张晨,李昌勇. 基于六方氮化硼材料的光栅型中红外线吸收器[J]. 光学学报, 2019, 39(10): 1005001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF