首页 > 论文 > 激光与光电子学进展 > 57卷 > 7期(pp:71602--1)

钙钛矿微纳激光器研究进展 (特邀综述) (封底文章)

Review of Perovskite Micro -and Nano-Lasers (Invited) (Back Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

钙钛矿材料作为新兴半导体材料,具有吸收系数大、载流子扩散长度长、缺陷态密度低和带隙可调谐等优点,在太阳能电池、光源等光电领域有着广泛的应用前景。本文主要探讨钙钛矿材料作为激光增益介质,应用于微纳激光领域所取得的成果与研究进展,并对不同激光腔的模式分类进行总结概述,最后对钙钛矿微纳激光的发展前景进行展望。

Abstract

As a new semiconductor material, perovskite material has the advantages of large absorption coefficient, long carrier diffusion length, low defect density, and tunable bandgap, and has wide application prospects in photovoltaic fields such as solar cells and light sources. This paper mainly discusses the achievements and research progress of perovskite as laser gain medium in the field of micro-nano laser, and summarizes the classification of different laser cavity modes. Finally, the development prospects of perovskite material micro-nano laser are prospected.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN248

DOI:10.3788/LOP57.071602

所属栏目:“固体激光材料”专题

基金项目:中国科学院战略性先导科技专项、国家自然科学基金、上海市优秀学术/技术带头人计划;

收稿日期:2020-01-15

修改稿日期:2020-02-24

网络出版日期:2020-04-01

作者单位    点击查看

黄斯豪:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
刘征征:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
杜鹃:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学杭州高等研究院, 浙江 杭州 310024中国科学院大学材料与光电研究中心, 北京 100049
冷雨欣:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学杭州高等研究院, 浙江 杭州 310024中国科学院大学材料与光电研究中心, 北京 100049上海科技大学物质科学与技术学院, 上海 201210

联系人作者:杜鹃(dujuan@mail.siom.ac.cn); 冷雨欣(lengyuxin@mail.siom.ac.cn);

备注:中国科学院战略性先导科技专项、国家自然科学基金、上海市优秀学术/技术带头人计划;

【1】Maiman T H. Stimulated optical radiation in ruby [J]. Nature. 1960, 187(4736): 493-494.

【2】Gather M C, Yun S H. Single-cell biological lasers [J]. Nature Photonics. 2011, 5(7): 406-410.

【3】Leonetti M, Conti C, López C. Random lasers: active mode control and gating [J]. Optics and Photonics News. 2013, 24(12): 29.

【4】Miller D. Device requirements for optical interconnects to silicon chips [J]. Proceedings of the IEEE. 2009, 97(7): 1166-1185.

【5】Kim T. McCall J G, Jung Y H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics [J]. Science. 2013, 340(6129): 211-216.

【6】Hill M T, Gather M C. Advances in small lasers [J]. Nature Photonics. 2014, 8(12): 908-918.

【7】Blanche P A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer [J]. Nature. 2010, 468(7320): 80-83.

【8】Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers [J]. Nature Materials. 2002, 1(2): 106-110.

【9】Huang M H. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001, 292(5523): 1897-1899.

【10】Ma R M, Ota S, Li Y M, et al. Explosives detection in a lasing plasmon nanocavity [J]. Nature Nanotechnology. 2014, 9(8): 600-604.

【11】Guo P F, Zhuang X J, Xu J Y, et al. Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires [J]. Nano Letters. 2013, 13(3): 1251-1256.

【12】Ji X Q, Li G H, Cui Y X, et al. Research progress in organic-inorganic hybridized perovskite lasers [J]. Semiconductor Technology. 2018, 43(6): 401-413, 442.
纪兴启, 李国辉, 崔艳霞, 等. 有机-无机杂化钙钛矿激光器的研究进展 [J]. 半导体技术. 2018, 43(6): 401-413, 442.

【13】Choquette K D, Hou H Q. Vertical-cavity surface emitting lasers: moving from research to manufacturing [J]. Proceedings of the IEEE. 1997, 85(11): 1730-1739.

【14】Klimov V I. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science. 2000, 290(5490): 314-317.

【15】Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature. 2003, 421(6920): 241-245.

【16】Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature. 2003, 426(6968): 816-819.

【17】Altug H, Vuckovic J. Photonic crystal nanocavity array laser [J]. Optics Express. 2005, 13(22): 8819-8828.

【18】Zhang Q, Liu X F. Utama M I B, et al. Phonon-assisted anti-stokes lasing in ZnTe nanoribbons [J]. Advanced Materials. 2016, 28(2): 276-283.

【19】Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Advanced Materials. 2016, 28(32): 6804-6834.

【20】Fan F J, Voznyy O, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy [J]. Nature. 2017, 544(7648): 75-79.Fan F J, Voznyy O, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy [J]. Nature. 2017, 544(7648): 75-79.

【21】Jeon T, Kim S J, Yoon J, et al. Hybrid perovskites: effective crystal growth for optoelectronic applications [J]. Advanced Energy Materials. 2017, 7(19): 1602596.

【22】Liao Q, Jin X, Fu H B. Tunable halide perovskites for miniaturized solid-state laser applications [J]. Advanced Optical Materials. 2019, 7(17): 1900099.

【23】Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society. 2009, 131(17): 6050-6051.

【24】Wang K, Subhani W S, Wang Y L, et al. Metal cations in efficient perovskite solar cells: progress and perspective [J]. Advanced Materials. 2019, 31(50): 1902037.

【25】Wang K Y, Wang S, Xiao S M, et al. Recent advances in perovskite micro- and nanolasers [J]. Advanced Optical Materials. 2018, 6(18): 1800278.

【26】Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing [J]. Nature Materials. 2014, 13(5): 476-480.

【27】Zhang Q, Su R, Du W N, et al. Advances in small perovskite-based lasers [J]. Small Methods. 2017, 1(9): 1700163.

【28】Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells [J]. Nature Photonics. 2014, 8(7): 506-514.

【29】Makarov S, Furasova A, Tiguntseva E, et al. Halide-perovskite nanophotonics: halide-perovskite resonant nanophotonics (advanced optical materials 1/2019) [J]. Advanced Optical Materials. 2019, 7(1): 1970002.

【30】Jiang Y, Wang X, Pan A L. Properties of excitons and photogenerated charge carriers in metal halide perovskites [J]. Advanced Materials. 2019, 31(47): 1806671.

【31】Saba M, Cadelano M, Marongiu D, et al. Correlated electron-hole plasma in organometal perovskites [J]. Nature Communications. 2014, 5: 5049.

【32】Wang Y, Li X M, Song J Z, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. Advanced Materials. 2015, 27(44): 7101-7108.

【33】Chan Y, Steckel J S, Snee P T, et al. Blue semiconductor nanocrystal laser [J]. Applied Physics Letters. 2005, 86(7): 073102.

【34】Sutherland B R, Hoogland S, Adachi M M, et al. Conformal organohalide perovskites enable lasing on spherical resonators [J]. ACS Nano. 2014, 8(10): 10947-10952.

【35】Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites [J]. Nature Communications. 2015, 6: 8056.

【36】Papagiorgis P, Manoli A, Protesescu L, et al. Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals [J]. ACS Photonics. 2018, 5(3): 907-917.

【37】Wang S, Yu J H, Zhang M Y, et al. Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy [J]. Nano Letters. 2019, 19(9): 6315-6322.

【38】Sutherland B R, Hoogland S, Adachi M M, et al. Perovskite thin films via atomic layer deposition [J]. Advanced Materials. 2015, 27(1): 53-58.

【39】Huang L Y. Lambrecht W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J]. Physical Review B. 2013, 88(16): 165203.

【40】Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Letters. 2013, 13(4): 1764-1769.

【41】Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters. 2015, 15(6): 3692-3696.

【42】Fu Y P, Zhu H M, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I) [J]. ACS Nano. 2016, 10(8): 7963-7972.

【43】Zhang Q, Su R, Liu X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets [J]. Advanced Functional Materials. 2016, 26(34): 6238-6245.

【44】Zhu H M, Fu Y P, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nature Materials. 2015, 14(6): 636-642.

【45】Fu Y P, Zhu H M, Schrader A W, et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability [J]. Nano Letters. 2016, 16(2): 1000-1008.

【46】Hao F, Stoumpos C C. Chang R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells [J]. Journal of the American Chemical Society. 2014, 136(22): 8094-8099.

【47】Walters G, Sutherland B R, Hoogland S, et al. Two-photon absorption in organometallic bromide perovskites [J]. ACS Nano. 2015, 9(9): 9340-9346.

【48】Gu Z Y, Wang K Y, Sun W Z, et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers [J]. Advanced Optical Materials. 2016, 4(3): 472-479.

【49】Kalanoor B S, Gouda L, Gottesman R, et al. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films [J]. ACS Photonics. 2016, 3(3): 361-370.

【50】Zhang W, Peng L, Liu J, et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers [J]. Advanced Materials. 2016, 28(21): 4040-4046.

【51】Gao Y S, Wang S, Huang C, et al. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers [J]. Scientific Reports. 2017, 7: 45391.

【52】Liu Z Z, Hu Z P, Zhang Z Y, et al. Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals [J]. ACS Photonics. 2019, 6(12): 3150-3158.

【53】Wang Y, Li X M, Zhao X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals [J]. Nano Letters. 2016, 16(1): 448-453.

【54】Xu Y Q, Chen Q, Zhang C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers [J]. Journal of the American Chemical Society. 2016, 138(11): 3761-3768.

【55】Wang X X, Zhou H, Yuan S P, et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing [J]. Nano Research. 2017, 10(10): 3385-3395.

【56】Yuan Z, Shu Y, Tian Y, et al. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks [J]. Chemical Communications. 2015, 51(91): 16385-16388.

【57】Bekenstein Y, Koscher B A, Eaton S W, et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies [J]. Journal of the American Chemical Society. 2015, 137(51): 16008-16011.

【58】He L N, ?zdemir ? K, Yang L. Whispering gallery microcavity lasers [J]. Laser & Photonics Reviews. 2013, 7(1): 60-82.

【59】Zhang Q, Ha S T, Liu X F, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers [J]. Nano Letters. 2014, 14(10): 5995-6001.

【60】Liao Q, Hu K, Zhang H H, et al. Perovskite microdisk microlasers self-assembled from solution [J]. Advanced Materials. 2015, 27(22): 3405-3410.

【61】Li G H, Che T, Ji X Q, et al. Nanodevices: record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite (adv. Funct. Mater. 2/2019) [J]. Advanced Functional Materials. 2019, 29(2): 1970012.

【62】Li B B, Zhou T J, Fang X, et al. Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry-Pérot mode lasing [J]. Journal of Materials Chemistry C. 2019, 7(14): 4102-4108.

【63】Guo P F, Hossain M K, Shen X, et al. Room-temperature red-green-blue whispering-gallery mode lasing and white-light emission from cesium lead halide perovskite (CsPbX3, X=Cl, Br, I) microstructures [J]. Advanced Optical Materials. 2018, 6(3): 1700993.

【64】Wang K Y, Sun S, Zhang C, et al. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors [J]. Materials Chemistry Frontiers. 2017, 1(3): 477-481.

【65】Tang B, Dong H X, Sun L X, et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres [J]. ACS Nano. 2017, 11(11): 10681-10688.

【66】Du W N, Zhang S, Wu Z Y, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities [J]. Nanoscale. 2019, 11(7): 3145-3153.

【67】Yang Z, Lu J F. ZhuGe M H, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing [J]. Advanced Materials. 2019, 31(18): 1900647.

【68】Zhizhchenko A, Syubaev S, Berestennikov A, et al. Single-mode lasing from imprinted halide-perovskite microdisks [J]. ACS Nano. 2019, 13(4): 4140-4147.

【69】Huang C, Sun W Z, Liu S, et al. Highly controllable lasing actions in lead halide perovskite-Si3N4 hybrid micro-resonators [J]. Laser & Photonics Reviews. 2019, 13(3): 1800189.

【70】Zhou B E, Jiang M M, Dong H X, et al. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity [J]. ACS Photonics. 2019, 6(3): 793-801.

【71】Hu Z P, Liu Z Z, Bian Y, et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability [J]. Advanced Optical Materials. 2018, 6(3): 1700997.

【72】Liu Z Z, Hu Z P, Shi T C, et al. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere [J]. Optics Express. 2019, 27(7): 9459-9466.

【73】Kurahashi N, Nguyen V C, Sasaki F, et al. Whispering gallery mode lasing in lead halide perovskite crystals grown in microcapillary [J]. Applied Physics Letters. 2018, 113(1): 011107.

【74】Tang X S, Yang J, Li S Q, et al. Quantum dots: single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties [J]. Advanced Science. 2019, 6(18): 1970107.

【75】Yang J, Liu Z Z, Zeng F J, et al. High-quality single-mode lasers based on zero-dimensional cesium lead halide perovskites [J]. Solar RRL. 2019, 3(10): 1900127.

【76】Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers [J]. Nature Reviews Materials. 2016, 1(6): 16028.

【77】Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers [J]. Advances in Optics and Photonics. 2013, 5(3): 216-273.

【78】Xing J, Liu X F, Zhang Q, et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers [J]. Nano Letters. 2015, 15(7): 4571-4577.

【79】Eaton S W, Lai M L, Gibson N A, et al. Lasing in robust cesium lead halide perovskite nanowires [J]. Proceedings of the National Academy of Sciences of the United States of America. 2016, 113(8): 1993-1998.

【80】Park K, Lee J W, Kim J D, et al. Light-matter interactions in cesium lead halide perovskite nanowire lasers [J]. The Journal of Physical Chemistry Letters. 2016, 7(18): 3703-3710.

【81】Pushkarev A P, Korolev V I, Markina D I, et al. Afew-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions [J]. ACS Applied Materials & Interfaces. 2019, 11(1): 1040-1048.

【82】Li Y, Guan S T, Liu Y, et al. Lasing properties of cesium lead halide perovskite nanowires fabricated by one-drop self-assembly and ion-exchange methods [J]. Optics Express. 2018, 26(26): 33856-33864.

【83】Liu Z, Shang Q Y, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires [J]. Applied Physics Letters. 2019, 114(10): 101902.

【84】Liu P, He X X, Ren J H, et al. Organic-inorganic hybrid perovskite nanowire laser arrays [J]. ACS Nano. 2017, 11(6): 5766-5773.

【85】Wang X X, Shoaib M, Wang X, et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling [J]. ACS Nano. 2018, 12(6): 6170-6178.

【86】Hu Z P, Liu Z Z, Bian Y, et al. Robustcesium lead halide perovskite microcubes for frequency upconversion lasing [J]. Advanced Optical Materials. 2017, 5(22): 1700419.

【87】Liu Z Z, Yang J, Du J, et al. Robust subwavelength single-mode perovskite nanocuboid laser [J]. ACS Nano. 2018, 12(6): 5923-5931.

【88】Mi Y, Liu Z X, Shang Q Y, et al. Fabry-pérot oscillation and room temperature lasing in perovskite cube-corner pyramid cavities [J]. Small. 2018, 14(9): 1703136.

【89】Yang L, Li Z Q, Liu C, et al. Temperature-dependent lasing of CsPbI3 triangular pyramid [J]. The Journal of Physical Chemistry Letters. 2019, 10(22): 7056-7061.

【90】Deschler F, Price M, Pathak S, et al. Highphotoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors [J]. The Journal of Physical Chemistry Letters. 2014, 5(8): 1421-1426.

【91】Wang Y, Li X M, Nalla V, et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals [J]. Advanced Functional Materials. 2017, 27(13): 1605088.

【92】Chen S T, Nurmikko A. Excitonic gain and laser emission from mixed-cation halide perovskite thin films [J]. Optica. 2018, 5(9): 1141-1149.

【93】Pourdavoud N, Haeger T, Mayer A, et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films [J]. Advanced Materials. 2019, 31(39): 1903717.

【94】Saliba M, Wood S M, Patel J B, et al. Structured organic-inorganic perovskite toward a distributed feedback laser [J]. Advanced Materials. 2016, 28(5): 923-929.

【95】Wiersma D S. The physics and applications of random lasers [J]. Nature Physics. 2008, 4(5): 359-367.

【96】Sapienza R. Determining random lasing action [J]. Nature Reviews Physics. 2019, 1(11): 690-695.

【97】Dhanker R, Brigeman A N, Larsen A V, et al. Random lasing in organo-lead halide perovskite microcrystal networks [J]. Applied Physics Letters. 2014, 105(15): 151112.

【98】Liu S, Sun W Z, Li J K, et al. Random lasing actions in self-assembled perovskite nanoparticles [J]. Optical Engineering. 2016, 55(5): 057102.

【99】Xu L, Meng Y, Xu C X, et al. Room temperature two-photon-pumped random lasers inFAPbBr3/polyethylene oxide (PEO) composite perovskite thin film [J]. RSC Advances. 2018, 8(64): 36910-36914.

【100】Safdar A, Wang Y, Krauss T F. Random lasing in uniform perovskite thin films [J]. Optics Express. 2018, 26(2): A75-A84.

【101】Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nature Photonics. 2013, 7(1): 13-23.

【102】Li X M, Wang Y, Sun H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing [J]. Advanced Materials. 2017, 29(36): 1701185.Li X M, Wang Y, Sun H D, et al. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing [J]. Advanced Materials. 2017, 29(36): 1701185.

【103】Yuan S, Chen D Q, Li X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing [J]. ACS Applied Materials & Interfaces. 2018, 10(22): 18918-18926.

【104】Wang Y C, Li H, Hong Y H, et al. Flexibleorganometal-halide perovskite lasers for speckle reduction in imaging projection [J]. ACS Nano. 2019, 13(5): 5421-5429.

【105】Tang X S, Bian Y, Liu Z Z, et al. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes [J]. Optics Letters. 2019, 44(19): 4706-4709.

引用该论文

Huang Sihao,Liu Zhengzheng,Du Juan,Leng Yuxin. Review of Perovskite Micro -and Nano-Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071602

黄斯豪,刘征征,杜鹃,冷雨欣. 钙钛矿微纳激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF