首页 > 论文 > 中国激光 > 46卷 > 9期(pp:904004--1)

改进的激光光斑位置分辨率模型

Improved Laser-Spot-Position Resolution Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了分析四象限探测器(QD)激光光斑位置检测性能,建立了新的高斯光斑位置分辨率数学模型。分析了高斯光斑模型下QD位置检测原理和近似数学模型,根据误差函数可导性,结合误差理论推导出位置分辨率与总信噪比、光斑中心位置和光斑半径关系的数学模型,数值仿真和实验系统验证了所提模型的正确性。结果表明,当光斑半径为0.74 mm,总信噪比为66.96 dB时,在光斑中心偏移±0.45 mm范围内,所提模型的估算误差约为36%,与原近似模型相比,精度提高了约1倍,可以对激光光斑位置检测系统的位置分辨率进行有效估算。

Abstract

In order to conveniently analyze the laser-spot-position detection performance of quadrant detectors (QDs), a new mathematical model of the Gauss spot''s position resolution is established in this paper. First, the principles and approximate mathematical model for QD-based position detection in the Gauss spot model are analyzed. Then, a mathematical model of the relationships among the position resolution, total signal-to-noise ratio, position of spot center, and spot radius are deduced by deriving certain error function and theory properties. Finally, the proposed model''s correctness is verified via numerical simulations and an experimental system. The results show that, over a ±0.45-mm range of spot center position, the proposed model''s estimated error is approximately 36% for a spot radius of 0.74 mm and total signal-to-noise ratio of 66.96 dB. Compared with the original approximate model, the proposed model offers approximately twice the accuracy. It can effectively estimate the resolution of laser-spot-position detection systems, which is of great assistance in engineering applications.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0904004

所属栏目:测量与计量

基金项目:国家自然科学基金;

收稿日期:2019-04-19

修改稿日期:2019-05-13

网络出版日期:2019-09-01

作者单位    点击查看

陈云善:中国科学院长春光学精密机械与物理研究所光电探测技术研究部, 吉林 长春 130033
吴佳彬:中国科学院长春光学精密机械与物理研究所光电探测技术研究部, 吉林 长春 130033
王景源:中国科学院长春光学精密机械与物理研究所光电探测技术研究部, 吉林 长春 130033
张楠:中国科学院国家天文台长春人造卫星观测站光电观测研究室, 吉林 长春 130033

联系人作者:陈云善(yiyunsn@163.com)

备注:国家自然科学基金;

【1】Liu Y Y, Mu Y N, Li Y et al. Laser eavesdropping system based on four quadrant detector. Piezoelectrics & Acoustooptics. 36(4), 675-678(2014).
刘艳阳, 母一宁, 李野 等. 基于四象限探测器的激光监听系统. 压电与声光. 36(4), 675-678(2014).

【2】Zhang J Q, Xie F, Xue Q S et al. Laser guided lens based on four-quadrant detector. Chinese Optics. 8(3), 471-479(2015).
张军强, 谢飞, 薛庆生 等. 基于四象限探测器的激光导引镜头的研制. 中国光学. 8(3), 471-479(2015).

【3】Zhou P S, Lu R S, Zhou W H et al. Measurement system for laser tracker''''s target-missing quantity based on four-quadrant detector. Electro-Optic Technology Application. 29(1), 75-79(2014).
周培松, 卢荣胜, 周维虎 等. 四象限探测器用于激光跟踪仪目标脱靶量测量. 光电技术应用. 29(1), 75-79(2014).

【4】Wang X G, Wang S M, Chen D D et al. Design of laser tracking system with quadrant detector. Laser & Infrared. 47(4), 432-436(2017).
王选钢, 王仕明, 陈丹丹 等. 采用四象限探测器的激光跟踪系统设计. 激光与红外. 47(4), 432-436(2017).

【5】Li S M and Zhang Y Q. Annular facula detection and error compensation of four-quadrant photoelectric detector in space laser communication. Chinese Journal of Lasers. 44(11), (2017).
李生民, 张圆清. 空间激光通信中四象限光电探测器环形光斑检测及误差补偿. 中国激光. 44(11), (2017).

【6】Fan X K, Zhang L, Song Y S et al. Simultaneous detection technology of tracking and communication based on four-quadrant detector. Chinese Journal of Lasers. 44(9), (2017).
范新坤, 张磊, 宋延嵩 等. 四象限探测器的跟踪与通信复合探测技术. 中国激光. 44(9), (2017).

【7】Liu J S, Zou H, Zhang M L et al. Optical fiber positioning based on four-quadrant detector with Gaussian fitting method. Research in Astronomy and Astrophysics. 17(7), (2017).

【8】Zhang W, Zhang H, Chen Y et al. Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector. Acta Physica Sinica. 66(1), (2017).
张伟, 张合, 陈勇 等. 脉冲激光四象限探测器测角不确定性统计分布. 物理学报. 66(1), (2017).

【9】Zhang H, Chen Y S, Geng T W et al. Study on main factors affecting position detection accuracy of four-quadrant detector. Chinese Journal of Lasers. 42(12), (2015).
张辉, 陈云善, 耿天文 等. 四象限探测器位置检测精度的主要影响因素研究. 中国激光. 42(12), (2015).

【10】Guo X K, Zhang Y M and He S J. Study on high precision positioning algorithm of spot center based on the four-quadrant detector. Laser & Infrared. 47(11), 1353-1357(2017).
郭小康, 张彦梅, 贺仕杰. 基于四象限探测器的光斑中心高精度定位算法. 激光与红外. 47(11), 1353-1357(2017).

【11】Narag J and Hermosa N. Response of quadrant detectors to structured beams via convolution integrals. Journal of the Optical Society of America A. 34(7), 1212-1216(2017).

【12】Yu J W, Li Q, Li H W et al. High-precision light spot position detection in low SNR condition based on quadrant detector. Applied Sciences. 9(7), (2019).

【13】Li Q, Xu S X, Yu J W et al. An improved method for the position detection of a quadrant detector for free space optical communication. Sensors. 19(1), (2019).

【14】Vo Q, Zhang X D and Fang F Z. Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system. Optics & Laser Technology. 112, 332-338(2019).

【15】Wu J B, Chen Y S, Gao S J et al. Improved measurement accuracy of spot position on an InGaAs quadrant detector. Applied Optics. 54(27), 8049-8054(2015).

引用该论文

Yunshan Chen,Jiabin Wu,Jingyuan Wang,Nan Zhang. Improved Laser-Spot-Position Resolution Model[J]. Chinese Journal of Lasers, 2019, 46(9): 0904004

陈云善,吴佳彬,王景源,张楠. 改进的激光光斑位置分辨率模型[J]. 中国激光, 2019, 46(9): 0904004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF