首页 > 论文 > 光学学报 > 40卷 > 20期(pp:2006001--1)

反射型极大倾角光纤光栅悬臂梁振动传感特性

Vibration Sensing Characteristics of Reflection-Type Excessively Tilted Fiber Grating Cantilever

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种反射型极大倾角光纤光栅(ExTFG)悬臂梁振动传感器。从理论上分析ExTFG的弯曲应变特性和振动传感原理,并利用ANSYS构建有限元模型,对传感器进行模态分析和谐振特性响应分析,通过实验研究其在受到周期性载荷下发生弯曲振动的动态响应特性。结果表明:反射型ExTFG悬臂梁振动传感器对加速度连续性激励信号展现出良好的动态响应,可通过调节传感器长度实现其固有频率的改变,在1~5g范围内具有良好的线性响应,其最大加速度灵敏度相对于透射式ExTFG振动传感器提高了约2.5倍, 横电模和横磁模时的最大加速度灵敏度分别达到0.3 V/g和0.26 V/g。此外,该传感器的传感探头尺寸足够小,以ExTFG作为敏感单元,无需额外封装,在实际应用中具有潜在价值。

Abstract

A vibration sensor based on the reflection-type excessively tilted fiber grating (ExTFG) cantilever is proposed in this work. The bending strain characteristics and vibration sensing principle of ExTFG are theoretically analyzed, and a finite element model is constructed by ANSYS to analyze the modality and resonance characteristic response of the sensor. The dynamic response characteristics of bending vibration of the sensor under the periodic load are studied experimentally. The results show that the vibration sensor based on the reflection-type ExTFG cantilever exhibits a good dynamic response to the acceleration continuous excitation signal. The natural frequency of the sensor can be changed by adjusting its length. The sensor has a good linear response in the range of 1--5g, and its maximum acceleration sensitivity is increased by about 2.5 times compared to the transmission-type ExTFG vibration sensor. The maximum acceleration sensitivity of the transverse electric mode and transverse magnetic mode reaches 0.3 V/g and 0.26 V/g, respectively. In addition, the size of the sensor probe is small enough, and the ExTFG is used as the sensitive unit without additional packaging, so it has potential value in practical applications.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/AOS202040.2006001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、重庆市教育委员会科学技术研究项目 、重庆市自然科学基金、重庆理工大学创新基金;

收稿日期:2020-05-06

修改稿日期:2020-07-06

网络出版日期:2020-10-01

作者单位    点击查看

邓欧:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
罗彬彬:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
吴德操:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
谢浪:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
赵明富:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
邹雪:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
石胜辉:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
刘恩华:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
蒋上海:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054

联系人作者:罗彬彬(luobinbin@cqut.edu.cn); 赵明富(luobinbin@cqut.edu.cn);

备注:国家自然科学基金、重庆市教育委员会科学技术研究项目 、重庆市自然科学基金、重庆理工大学创新基金;

【1】Zhang D S, Li W, Guo D, et al. Real-time monitor system of bridge-cable force based on FBG vibration sensor and its application [J]. Chinese Journal of Sensors and Actuators. 2007, 20(12): 2720-2723.
张东生, 李微, 郭丹, 等. 基于光纤光栅振动传感器的桥梁索力实时监测 [J]. 传感技术学报. 2007, 20(12): 2720-2723.

【2】Xue J F, Song H, Wang W J. Application of optical fiber grating in health monitoring for aircraft structure [J]. Aeronautical Manufacturing Technology. 2012, 55(22): 45-49.
薛景锋, 宋昊, 王文娟. 光纤光栅在航空结构健康监测中的应用前景 [J]. 航空制造技术. 2012, 55(22): 45-49.

【3】Li K. Chan T H T, Yau M H, et al. Experimental verification of the modified spring-mass theory of fiber Bragg grating accelerometers using transverse forces [J]. Applied Optics. 2014, 53(6): 1200-1211.

【4】Feng D Y, Qiao X G, Yang H Z, et al. A fiber Bragg grating accelerometer based on a hybridization of cantilever beam [J]. IEEE Sensors Journal. 2015, 15(3): 1532-1537.

【5】Parida O P, Thomas J, Nayak J, et al. Double-L cantilever-based fiber Bragg grating accelerometer [J]. IEEE Sensors Journal. 2019, 19(23): 11247-11254.

【6】Guo T, Shao L Y, Tam H Y, et al. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling [J]. Optics Express. 2009, 17(23): 20651-20660.

【7】Rong Q Z, Qiao X G, Guo T, et al. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding [J]. Optics Letters. 2014, 39(23): 6616-6619.

【8】Cai S S, Nan Y G, Xie W P, et al. Fiber-optic accelerometer using tilted grating inscribed in depressed cladding fibers [J]. IEEE Photonics Technology Letters. 2017, 29(24): 2171-2174.

【9】Zhou K M, Zhang L, Chen X F, et al. Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80 degrees tilted structures [J]. Optics Letters. 2006, 31(9): 1193-1195.

【10】Luo B B, Yang W M, Hu X Y, et al. Study on vibration sensing performance of an equal strength cantilever beam based on an excessively tilted fiber grating [J]. Applied Optics. 2018, 57(9): 2128-2134.

【11】Luo B B, Xie L, Wang Y J, et al. Performance optimization of excessively tilted fiber grating cantilever beam vibration sensor [J]. Acta Optica Sinica. 2019, 39(8): 0806006.
罗彬彬, 谢浪, 王亚杰, 等. 极大倾角光纤光栅悬臂梁振动传感器性能优化 [J]. 光学学报. 2019, 39(8): 0806006.

【12】Xie L, Luo B B, Zhao M F, et al. Orientation-dependent optic-fiber accelerometer based on excessively tilted fiber grating [J]. Optics Letters. 2020, 45(1): 125-128.

【13】Yan Z J, Wang H S, Wang C L, et al. Theoretical and experimental analysis of excessively tilted fiber gratings [J]. Optics Express. 2016, 24(11): 12107-12115.

【14】Wu X Q, Wang X, Li S L, et al. Cantilever fiber-optic accelerometer based on modal interferometer [J]. IEEE Photonics Technology Letters. 2015, 27(15): 1632-1635.

【15】Hu H Y. Mechanical vibration basics[M]. Harbin: Harbin Institute of Technology Press, 2004, 110-114.
胡海岩. 机械振动基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004, 110-114.

引用该论文

Deng Ou,Luo Binbin,Wu Decao,Xie Lang,Zhao Mingfu,Zou Xue,Shi Shenghui,Liu Enhua,Jiang Shanghai. Vibration Sensing Characteristics of Reflection-Type Excessively Tilted Fiber Grating Cantilever[J]. Acta Optica Sinica, 2020, 40(20): 2006001

邓欧,罗彬彬,吴德操,谢浪,赵明富,邹雪,石胜辉,刘恩华,蒋上海. 反射型极大倾角光纤光栅悬臂梁振动传感特性[J]. 光学学报, 2020, 40(20): 2006001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF