首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221014--1)

一种基于双特征马尔可夫随机场的图像分割方法

Image Segmentation Method Based on Dual Feature Markov Random Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统图像分割算法存在图像特征信息描述单一、分割效果差等缺点,为此,提出一种基于双特征马尔可夫随机场的图像分割方法。首先,利用像素之间的空间信息对高斯混合模型的先验概率和后验概率进行约束,建立灰度随机场。其次,在利用分数阶微分算子非线性保留图像的边缘轮廓和纹理细节的基础上,利用灰度共生矩阵描述图像的纹理特征信息,并建立纹理特征随机场。最后,设计了用于图像分割的双特征马尔可夫随机场,通过条件迭代算法优化求解标号场最大后验概率,实现图像分割。实验验证了分割算法的有效性,分割正确率达到93.9%,所提出的双特征随机场能够提高图像分割算法的鲁棒性和准确性。

Abstract

Traditional image segmentation algorithms have disadvantages such as single description of image feature information and poor segmentation effect. Therefore, a dual feature Markov random field (MRF) image segmentation method is proposed. First, the spatial information between pixels is used to constrain the prior and posterior probabilities of the Gaussian mixture model (GMM) to establish a grayscale random field. Second, on the basis of non-linearly preserving the edge contours and texture details of the image by the fractional differential operator, a grayscale co-occurrence matrix is used to describe the texture feature information of the image and establish a random field of texture features. Finally, a dual feature Markov random field for image segmentation is designed, and the conditional iterative algorithm is used to optimize the maximum posterior probability of the labeled field to achieve image segmentation. Experiments verify the effectiveness of the segmentation algorithm and the segmentation accuracy is 93.9%. The proposed dual feature random field can improve the robustness and accuracy of the image segmentation algorithm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP57.221014

所属栏目:图像处理

基金项目:河南省科技攻关计划项目、河南省高等学校重点科研项目;

收稿日期:2020-03-02

修改稿日期:2020-04-20

网络出版日期:2020-11-01

作者单位    点击查看

段明义:郑州工程技术学院信息工程学院, 河南 郑州 450044
卢印举:郑州工程技术学院信息工程学院, 河南 郑州 450044上海理工大学光电信息与计算机工程学院, 上海 200093
苏玉:郑州工程技术学院信息工程学院, 河南 郑州 450044

联系人作者:卢印举(luyinju2003@163.com)

备注:河南省科技攻关计划项目、河南省高等学校重点科研项目;

【1】Hu X, Liu Z J, Yao Y T, et al. Crowdsourcing model research for the identification of post-earthquake rescue objects [J]. Journal of Earthquake Engineering. 2019, 23(5): 863-881.Hu X, Liu Z J, Yao Y T, et al. Crowdsourcing model research for the identification of post-earthquake rescue objects [J]. Journal of Earthquake Engineering. 2019, 23(5): 863-881.

【2】Wang Y, Zhu L Q, Yu Z J, et al. Segmentation and recognition algorithm for high-speed railway scene [J]. Acta Optica Sinica. 2019, 39(6): 0610004.
王洋, 朱力强, 余祖俊, 等. 高速铁路场景的分割与识别算法 [J]. 光学学报. 2019, 39(6): 0610004.

【3】Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging. 2016, 35(5): 1240-1251.Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging. 2016, 35(5): 1240-1251.

【4】Li L F, Sun R Y. Bridge crack detection algorithm based on image processing under complex background [J]. Laser & Optoelectronics Progress. 2019, 56(6): 061002.
李良福, 孙瑞赟. 复杂背景下基于图像处理的桥梁裂缝检测算法 [J]. 激光与光电子学进展. 2019, 56(6): 061002.

【5】Hassan M, Murtza I, Hira A, et al. Robust spatial fuzzy GMM based MRI segmentation and carotid artery plaque detection in ultrasound images [J]. Computer Methods and Programs in Biomedicine. 2019, 175: 179-192.

【6】Li P, Zhang Y. Video smoke detection based on Gaussian mixture model and convolutional neural network [J]. Laser & Optoelectronics Progress. 2019, 56(21): 211502.
李鹏, 张炎. 基于高斯混合模型和卷积神经网络的视频烟雾检测 [J]. 激光与光电子学进展. 2019, 56(21): 211502.

【7】Wang L, Liu Q. A multi-object image segmentation algorithm based on local features [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061002.
王琳, 刘强. 基于局部特征的多目标图像分割算法 [J]. 激光与光电子学进展. 2018, 55(6): 061002.

【8】Nazarinezhad J, Dehghani M. A contextual-based segmentation of compact PolSAR images using Markov Random Field (MRF) model [J]. International Journal of Remote Sensing. 2019, 40(3): 985-1010.Nazarinezhad J, Dehghani M. A contextual-based segmentation of compact PolSAR images using Markov Random Field (MRF) model [J]. International Journal of Remote Sensing. 2019, 40(3): 985-1010.

【9】Yang J Z, Lu L, Tan W J, et al. A modified MRF algorithm based on neighborhood spatial information for MRI brain tissue segmentation [J]. Journal of Medical Imaging and Health Informatics. 2017, 7(7): 1525-1530.

【10】Zheng C, Wang L G, Chen X H. A hybrid Markov random field model with multi-granularity information for semantic segmentation of remote sensing imagery [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2019, 12(8): 2728-2740.

【11】Zhou T X, Ruan S. Canu S. A review: deep learning for medical image segmentation using multi-modality fusion. Array[J]. 2019, 3/4: 100004.

【12】Wang W X, Fu Y T, Dong F, et al. Infrared ship target detection method based on deep convolution neural network [J]. Acta Optica Sinica. 2018, 38(7): 0712006.
王文秀, 傅雨田, 董峰, 等. 基于深度卷积神经网络的红外船只目标检测方法 [J]. 光学学报. 2018, 38(7): 0712006.

【13】Feng C X, Wang X L. Convolution-deconvolution image segmentation model for fusion features and decision [J]. Laser & Optoelectronics Progress. 2019, 56(1): 011008.
冯晨霄, 汪西莉. 融合特征和决策的卷积-反卷积图像分割模型 [J]. 激光与光电子学进展. 2019, 56(1): 011008.

【14】Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(4): 640-651.

【15】Gamal M, Siam M. -03-10)[2020-03-02] [EB/OL]. Abdel-Razek M. ShuffleSeg: real-time semantic segmentation network. 2018, org/abs/1803: 03816.Gamal M, Siam M. -03-10)[2020-03-02] [EB/OL]. Abdel-Razek M. ShuffleSeg: real-time semantic segmentation network. 2018, org/abs/1803: 03816.

【16】Chu J, Yu J J, Miao J, et al. Local Gaussian distribution fitting energy model with fractional differential [J]. Pattern Recognition and Artificial Intelligence. 2019, 32(5): 409-419.
储珺, 余佳佳, 缪君, 等. 引入分数阶微分的局部高斯分布拟合能量模型 [J]. 模式识别与人工智能. 2019, 32(5): 409-419.

【17】Song Y, He B, Zhao Y, et al. Segmentation of sidescan sonar imagery using Markov random fields and extreme learning machine [J]. IEEE Journal of Oceanic Engineering. 2019, 44(2): 502-513.

【18】University of Southern California. The USC-SIPI image database [EB/OL]. 2019.University of Southern California. The USC-SIPI image database [EB/OL]. 2019.

【19】Wei S, Leung H. A Markov random field approach for sidescan sonar change detection [J]. IEEE Journal of Oceanic Engineering. 2012, 37(4): 659-669.

引用该论文

Duan Mingyi,Lu Yinju,Su Yu. Image Segmentation Method Based on Dual Feature Markov Random Field[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221014

段明义,卢印举,苏玉. 一种基于双特征马尔可夫随机场的图像分割方法[J]. 激光与光电子学进展, 2020, 57(22): 221014

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF