首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170630--1)

非扫描相关解调光纤法布里-珀罗微腔应变传感器

Non-Scanning Correlation Demodulation for Fiber-Optic Fabry-Perot Microcavity Strain Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

使用单模光纤与空芯熔石英光纤制作了一种高灵敏度的光纤法布里-珀罗(F-P)微腔应变传感器,并采用非扫描相关解调技术实现了这种应变传感器的解调。该传感器由两段垂直切割的单模熔石英光纤穿入一段空芯熔石英光纤制成,其腔长为微米量级。将单模熔石英光纤固定于空芯熔石英光纤两端,实现了光纤F-P微腔应变传感器腔长-应变灵敏度的增敏效果。根据其腔长变化范围采用非扫描相关解调技术进行解调,对于初始腔长为30.129 μm,空芯熔石英光纤长度为40 mm的光纤F-P微腔应变传感器,腔长-应变变化灵敏度达到了14.08 nm/με,线性度可达99.7%。

Abstract

A highly sensitive fiber-optic Fabry-Perot microcavity strain sensor is fabricated using single-mode fibers and a glass capillary tube; the fabricated strain sensor is demodulated using the non-scanning correlation demodulation method. The sensor is fabricated by penetrating two vertically cut single-mode fused silica fibers into a hollow core fused silica fiber and fixing the fibers to both ends of the hollow core fused silica fiber. Thus, the enhanced cavity length-strain sensitivity of the fiber-optic Fabry-Perot microcavity strain sensor is realized. The sensor has a cavity length with micron dimension. The non-scanning correlation demodulation method is used for demodulation based on varying cavity lengths. For a fiber-optic Fabry-Perot microcavity strain sensor with an initial cavity length of 30.129 μm and a hollow core capillary length of 40 mm, the cavity length-strain sensitivity reaches 14.08 nm/με and its linearity is up to 99.7%.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170630

所属栏目:功能光纤

基金项目:西安市智能探视感知重点实验室项目、陕西省组合与智能导航重点实验室开放基金;

收稿日期:2019-05-21

修改稿日期:2019-07-02

网络出版日期:2019-09-01

作者单位    点击查看

寇琬莹:西安工业大学光电工程学院, 陕西 西安 710021
王伟:西安工业大学光电工程学院, 陕西 西安 710021
陈海滨:西安工业大学光电工程学院, 陕西 西安 710021
张天阳:西安工业大学光电工程学院, 陕西 西安 710021
吕文涛:西安工业大学光电工程学院, 陕西 西安 710021

联系人作者:王伟(wangwei@xatu.edu.cn)

备注:西安市智能探视感知重点实验室项目、陕西省组合与智能导航重点实验室开放基金;

【1】Pevec S and Donlagic D. All-fiber, long-active-length Fabry-Perot strain sensor. Optics Express. 19(16), 15641-15651(2011).

【2】Ding X D, Zhang Y M, Song Y M et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain. Chinese Journal of Lasers. 44(11), (2017).
丁旭东, 张钰民, 宋言明 等. 纯石英芯光纤光栅高温应变响应特性. 中国激光. 44(11), (2017).

【3】Ferreira M S, Bierlich J, Kobelke J et al. Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber. Optics Express. 20(20), 21946-21952(2012).

【4】Peng J, Feng W L, Yang X Z et al. Dual Fabry-Pérot interferometric carbon monoxide sensor based on the PANI/Co3O4 sensitive membrane-coated fibre tip. Zeitschrift Für Naturforschung A. 74(2), 101-107(2019).

【5】Wang Y H, Zhang M Y, Zhang C W et al. Strain sensing measurement technology for fiber Bragg grating with holder type temperature self-compensation. Laser & Optoelectronics Progress. 55(5), (2018).
王永洪, 张明义, 张春巍 等. 夹持式温度自补偿光纤布拉格光栅应变传感测试技术. 激光与光电子学进展. 55(5), (2018).

【6】Kaur A, Watkins S E, Huang J et al. Microcavity strain sensor for high temperature applications. Optical Engineering. 53(1), (2014).

【7】Tan Z, Liao C R, Liu S et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating. Acta Optica Sinica. 38(12), (2018).
谭展, 廖常锐, 刘申 等. 基于空芯光纤和光纤布拉格光栅的温度应变同时测量传感器. 光学学报. 38(12), (2018).

【8】Ma S Z, Feng W L, Peng Z Q et al. Carbon monoxide gas sensor based on CuO/PANI coated photonic crystal fiber. Laser & Optoelectronics Progress. 56(5), (2019).
马诗章, 冯文林, 彭志清 等. 基于氧化铜/聚苯胺包覆光子晶体光纤的一氧化碳传感器. 激光与光电子学进展. 56(5), (2019).

【9】Yin C C, Cao Z G, Zhang Z et al. Temperature-independent ultrasensitive Fabry-Perot all-fiber strain sensor based on a bubble-expanded microcavity. IEEE Photonics Journal. 6(4), (2014).

【10】Ferreira M S, Roriz P, Bierlich J et al. Fabry-Perot cavity based on silica tube for strain sensing at high temperatures. Optics Express. 23(12), 16063-16070(2015).

【11】Villatoro J, Finazzi V, Coviello G et al. Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer. Optics Letters. 34(16), 2441-2443(2009).

【12】Gong Y, Rao Y J, Guo Y et al. Temperature-insensitive micro Fabry-Pérot strain sensor fabricated by chemically etching Er-doped fiber. IEEE Photonics Technology Letters. 21(22), 1725-1727(2009).

【13】Liu S, Wang Y P, Liao C R et al. High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer. Optics Letters. 39(7), 2121-2124(2014).

【14】Zhao Y, Chen M Q, Lü R Q et al. In-fiber rectangular air Fabry-Perot strain sensor based on high-precision fiber cutting platform. Optics Communications. 384, 107-110(2017).

【15】Costa G K B, Gouvêa P M P, Soares L M B et al. . In-fiber Fabry-Perot interferometer for strain and magnetic field sensing. Optics Express. 24(13), 14690-14696(2016).

【16】Li K, Wen H Q and Li H. A study on miniature interferometer strain sensor based on EFPI. Acta Optica Sinica. 29(12), 3282-3285(2009).
李坤, 文泓桥, 李慧. 光纤法布里-珀罗结构的微型应变传感器的研制. 光学学报. 29(12), 3282-3285(2009).

【17】Chen W M, Lei X H, Zhang W et al. Recent progress of optical fiber Fabry-Perot sensors. Acta Optica Sinica. 38(3), (2018).
陈伟民, 雷小华, 张伟 等. 光纤法布里-珀罗传感器研究进展. 光学学报. 38(3), (2018).

【18】Favero F C, Araujo L, Bouwmans G et al. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Optics Express. 20(7), 7112-7118(2012).

【19】Tian K, Farrell G, Wang X F et al. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure. Optics Express. 25(16), 18885-18896(2017).

【20】Jia P G, Fang G C, Li Z et al. “Bellows spring-shaped” ultrasensitive fiber-optic Fabry-Perot interferometric strain sensor. Sensors and Actuators A: Physical. 277, 85-91(2018).

【21】Liu C C, Zou X and Zhou Z X. Study of high-precision dynamic optical fiber strain sensing. Acta Photonica Sinica. 45(11), (2016).
刘冲冲, 邹翔, 周正仙. 高精度动态光纤应变传感研究. 光子学报. 45(11), (2016).

【22】Zhang Y, Wang N K, Chen H B et al. Non-scanning correlation demodulation system for compound optical fiber Fabry-Perot sensors. Laser & Optoelectronics Progress. 56(13), (2019).
张瑶, 王可宁, 陈海滨 等. 复合式光纤法布里-珀罗传感器非扫描相关解调系统. 激光与光电子学进展. 56(13), (2019).

【23】Wang W, Tang Y, Zhang X X et al. Elliptical-fitting cavity length demodulation algorithm for compound fiber-optic Fabry-Perot pressure sensor with short cavity. Acta Optica Sinica. 39(6), (2019).
王伟, 唐瑛, 张雄星 等. 短腔长复合式光纤法布里-珀罗压力传感器椭圆拟合腔长解调算法. 光学学报. 39(6), (2019).

【24】Li J S, Zhu Y, Wang N et al. An algorithm for improving the signal stability of the fast fiber optic Fabry-Perot nonscanning correlation demodulation system. Acta Photonica Sinica. 44(1), (2015).
李钧寿, 朱永, 王宁 等. 一种提高快速光纤珐-珀非扫描式相关解调系统信号稳定性的算法. 光子学报. 44(1), (2015).

引用该论文

Wanying Kou, Wei Wang, Haibin Chen, Tianyang Zhang, Wentao Lü. Non-Scanning Correlation Demodulation for Fiber-Optic Fabry-Perot Microcavity Strain Sensor[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170630

寇琬莹, 王伟, 陈海滨, 张天阳, 吕文涛. 非扫描相关解调光纤法布里-珀罗微腔应变传感器[J]. 激光与光电子学进展, 2019, 56(17): 170630

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF