首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1001003--1)

基于水面特征波纹的水下运动目标Radon变换探测方法

Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

潜艇被誉为“水中杀手”,以其高度的隐蔽性和机动性在海洋中具有强大的威慑力和打击力,因此,潜艇探测研究一直受到高度重视。随着潜艇降噪技术的进步,声呐等传统探潜技术已不能满足应用的需要,人们逐渐将目光转向了潜艇的非声学探测技术。潜艇在水下航行时会在身后水域形成一片持续时间较长、长度有时可达数十千米的水动力学尾迹(主要包括伯努利水丘、开尔文尾迹、湍流尾迹、内波尾迹、热尾迹等)。与其他非声物理场特征信息相比,水动力学尾迹具有频率特征明显、极难被“隐身”等特点,这为水下探潜提供了信息基础。而且,水动力学尾迹影响的水域范围很广,因而十分适用于基于遥感手段的探测。据文献报道,即便潜艇在水下1000 ft(1 ft≈0.3048 m)的深度航行,在海面依然可以探测到伯努利水丘和开尔文尾迹。美国海军于2009年开始研究全新的液体隐身衣,通过超材料改变潜艇的表面特性和水流分布,以减小水下潜艇运行中的水面波纹。近年来,随着成像探测及图像信息处理技术的发展,基于潜艇水动力学尾迹的目标探测技术迅速发展[1],机载、星载可见光遥感和成像雷达均成为有效的水面舰艇探测手段,其中,机载光电成像模式以其空间分辨率高、成像细节清晰等特点,近年来在海洋监测和海洋科学研究领域备受青睐[2]。但当潜艇在水下航行深度加大或速度减小时,水面特征波纹的表现会逐渐减弱,再加上海面风生重力波等复杂波纹的影响,这些都加大了水面特征的探测难度。

Abstract

An underwater moving target detection algorithm based on water surface characteristic wave is proposed to overcome the shortage of effective detection methods for photoelectric polarization imaging modes. Based on the wind-induced gravity wave model and the water surface characteristic wave model of an underwater moving target, the mixed wave images under different states are simulated and used for the research of the algorithm. The algorithm uses the Radon transform to extract the linear wave characteristic, and average filter and standardization are employed to preprocess images, thereby eliminating the adverse effect of Radon transform on detection. The double-neighborhood adaptive threshold method is employed to extract partial peak points in Radon transform domain. The algorithm employs continuous wavelet transform to extract features and support vector machine to judge the peak points, thereby improving the detection accuracy. The experimental result shows that the algorithm is feasible for characteristic wave detection, which also provides a new way for underwater moving target detection.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1001003

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金;

收稿日期:2019-04-02

修改稿日期:2019-06-03

网络出版日期:2019-10-01

作者单位    点击查看

徐曼:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
裘溯:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
金伟其:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
杨洁:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
郭宏:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081

联系人作者:裘溯(edmondqiu@bit.edu.cn)

备注:国家自然科学基金;

【1】Zhang J, Zhang X C, Zhao F et al. Progress of investigation on non-acoustic detection for submarine wake originated from naval hydrodynamics. Journal of Ship Mechanics. 7(2), 121-128(2003).
张军, 张效慈, 赵峰 等. 源于水动力学的潜艇尾迹非声探测技术研究之进展. 船舶力学. 7(2), 121-128(2003).

【2】Zhou Q F, Liu J H, Xiong W Z et al. Multi-target self-determination orientation system based on airborne photoelectric imaging platform. Acta Optica Sinica. 35(1), (2015).
周前飞, 刘晶红, 熊文卓 等. 机载光电成像平台的多目标自主定位系统研究. 光学学报. 35(1), (2015).

【3】Lu X T, Jin W Q, Li L et al. Theory and analysis of a large field polarization imaging system with obliquely incident light. Optics Express. 26(3), 2495-2508(2018).

【4】Zhang Y J, Wang X and He S. Polarization properties of rough surfaces based on polarized bi-directional reflectance distribution function. Acta Optica Sinica. 38(3), (2018).
章延隽, 王霞, 贺思. 基于偏振双向反射分布函数的粗糙表面偏振特性. 光学学报. 38(3), (2018).

【5】Liu J, Lu X T, Jin W Q et al. Transparent surface orientation from polarization imaging using vector operation. Applied Optics. 57(9), 2306-2313(2018).

【6】Rey M T, Tunaley J K, Folinsbee J T et al. Application of radon transform techniques to wake detection in seasat-a SAR images. IEEE Transactions on Geoscience and Remote Sensing. 28(4), 553-560(1990).

【7】Mata-Moya D, Jarabo-Amores P, Jimenez-Chaparro B et al. Application of mean-shift filtering to ship wakes detection in SAR images. [C]∥8th European Conference on Synthetic Aperture Radar (EUSAR), June 7-10, 2010, Aachen, Germany. New York: IEEE. 890-893(2011).

【8】Graziano M D. SAR-based ship route estimation by wake components detection and classification. [C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE. 3255-3258(2015).

【9】Yang G Z, Yu J, Xiao C B et al. Ship wake detection in SAR images with complex background using morphological dictionary learning. Acta Automatica Sinica. 43(10), 1713-1725(2017).
杨国铮, 禹晶, 肖创柏 等. 基于形态字典学习的复杂背景SAR图像舰船尾迹检测. 自动化学报. 43(10), 1713-1725(2017).

【10】Xing X W, Ji K F, Zou H X et al. An enhancing normalized radon transform method for ship wake detection in SAR imagery. [C]∥9th European Conference on Synthetic Aperture Radar (EUSAR), April 23-26, 2012, Nuremberg, Germany. New York: IEEE. 559-562(2012).

【11】Li D M, Jin W Q, Li L et al. Numerical simulation and analysis of free-surface wake generated by moving submerged target. Infrared and Laser Engineering. 47(11), (2018).
李丹梦, 金伟其, 李力 等. 水下运动目标的水面波纹数值模拟及分析. 红外与激光工程. 47(11), (2018).

【12】Li H, Guo C and Li X F. 3-D visual simulation of irregular ocean waves based on Matlab. Journal of System Simulation. 15(7), 1057-1059(2003).
李晖, 郭晨, 李晓方. 基于Matlab的不规则海浪三维仿真. 系统仿真学报. 15(7), 1057-1059(2003).

【13】Yang H P and Sun J G. Wave simulation based on ocean wave spectrums. Journal of System Simulation. 14(9), 1175-1178(2002).
杨怀平, 孙家广. 基于海浪谱的波浪模拟. 系统仿真学报. 14(9), 1175-1178(2002).

【14】Jain A and Signal Processing. San Diego, CA, USA. New York:. IEEE, 495-498(1984).

【15】Kaiser G and Hudgins L H. A friendly guide to wavelets. Physics Today. 48(7), 57-58(1995).

【16】Zhou X and Zhao H. Three-dimensional profilometry based on Mexican hat wavelet transform. Acta Optica Sinica. 29(1), 197-202(2009).
周翔, 赵宏. 基于Mexican hat小波变换的三维轮廓术. 光学学报. 29(1), 197-202(2009).

【17】Wang S T, Wu X, Zhu W H et al. Fluorescence detection of polycyclic aromatic hydrocarbons by parallel factor combined with support vector machine. Acta Optica Sinica. 39(5), (2019).
王书涛, 吴兴, 朱文浩 等. 平行因子结合支持向量机对多环芳烃的荧光检测. 光学学报. 39(5), (2019).

引用该论文

Man Xu,Su Qiu,Weiqi Jin,Jie Yang,Hong Guo. Radon Transform Detection Method for Underwater Moving Target Based on Water Surface Characteristic Wave[J]. Acta Optica Sinica, 2019, 39(10): 1001003

徐曼,裘溯,金伟其,杨洁,郭宏. 基于水面特征波纹的水下运动目标Radon变换探测方法[J]. 光学学报, 2019, 39(10): 1001003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF