首页 > 论文 > 中国激光 > 46卷 > 9期(pp:910001--1)

地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达性能的影响

Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用中分辨率成像光谱仪地表反射率产品和欧洲中期天气预报中心的气溶胶光学厚度产品,分析了全球地表反射率及气溶胶光学厚度的分布特征,分析了地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达系统回波功率、探测器输出信噪比、相对随机误差的影响。结果表明:在给定的系统参数下,得到的单脉冲回波功率范围为0.299~321 nW,对探测器动态范围的要求较高;单脉冲回波探测器输出信噪比在13.6 dB以上,累计148次(陆地)/296次(海洋)脉冲的探测器输出信噪比在26 dB以上;相对随机误差高值区出现在撒哈拉沙漠及阿拉伯半岛附近海域,最大相对随机误差达到了0.22%(0.88×10 -6)。

Abstract

The distribution characteristics of global surface reflectance and aerosol optical depth are analyzed using a surface-reflectance product of moderate-resolution imaging spectroradiometer and an aerosol-optical-depth product of European centre for medium-range weather forecasts. The effects of surface reflectance and aerosol optical depth on the echo power, detector output signal-to-noise ratio, and relative random error of spaceborne integral path differential absorption lidar systems are analyzed. Results show that with the given system parameters, the single-pulse echo power range is approximately 0.299-321 nW, which requires the detector to have a high dynamic range. The output signal-to-noise ratio of single-pulse echo detector is greater than 13.6 dB, and the output signal-to-noise ratio of detector with an accumulative 148 times (land)/296 times (ocean) pulse is greater than 26 dB. The high values of relative random error appear in the sea near the Sahara Desert and Arabian Peninsula, and the maximum relative random error is 0.22% (0.88×10 -6).

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0910001

所属栏目:遥感与传感器

基金项目:国家自然科学基金、国家重点研究计划、民用航天预研;

收稿日期:2019-03-14

修改稿日期:2019-05-09

网络出版日期:2019-09-01

作者单位    点击查看

杨巨鑫:南京信息工程大学气象灾害预警与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室,教育部气象灾害重点实验室, 江苏 南京 210044
朱亚丹:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
王勤:南京信息工程大学气象灾害预警与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室,教育部气象灾害重点实验室, 江苏 南京 210044
卜令兵:南京信息工程大学气象灾害预警与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室,教育部气象灾害重点实验室, 江苏 南京 210044
刘继桥:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
陈卫标:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

联系人作者:卜令兵(lingbingbu@nuist.edu.cn)

备注:国家自然科学基金、国家重点研究计划、民用航天预研;

【1】Jefferson M. IPCC fifth assessment synthesis report: “Climate change 2014: longer report”: Critical analysis. Technological Forecasting and Social Change. 92, 362-363(2015).

【2】Yoshida Y, Ota Y, Eguchi N et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite. Atmospheric Measurement Techniques Discussions. 3(6), 4791-4833(2010).

【3】Kimura T. Overview of Japanese earth observation programs (conference presentation). Proceedings of SPIE. 10785, (2018).

【4】Crisp D, Pollock H R, Rosenberg R et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques. 10(1), 59-81(2017).

【5】Chen W, Zhang Y, Yin Z et al. In the TanSat mission: global CO2 observation and monitoring. [C]∥63rd International Astronautical Congress, October 1-5, 2012, Naples, Italy. [S.l.: s.n.]. 1-5(2012).

【6】Zhang L, Yue T, Wilson J et al. Modelling of XCO2 surfaces based on flight tests of TanSat instruments. Sensors. 16(11), (2016).

【7】Tang S F, Lu Z J, Wang W G et al. Brief description of space hyperspectral imager. Infrared and Laser Engineering. 48(3), (2019).
唐绍凡, 鲁之君, 王伟刚 等. 航天高光谱成像仪简述. 红外与激光工程. 48(3), (2019).

【8】Xiong W. Greenhouse gases monitoring instrument(GMI) on GF-5 satellite. Infrared and Laser Engineering. 48(3), (2019).
熊伟. “高分五号”卫星大气主要温室气体监测仪. 红外与激光工程. 48(3), (2019).

【9】Kawa S R, Abshire J B, Baker D F et al. -11-28)[2019-03-02]. https:∥ntrs.nasa.gov/search.jsp?R=20190000855. (2018).

【10】Abshire J B, Riris H, Allan G R et al. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus B: Chemical and Physical Meteorology. 62(5), 770-783(2010).

【11】Abshire J B, Riris H, Weaver C J et al. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar. Applied Optics. 52(19), 4446-4461(2013).

【12】Abshire J B, Ramanathan A K, Riris H et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector. Atmospheric Measurement Techniques. 11(4), 2001-2025(2018).

【13】Campbell J F, Lin B and Nehrir A R. Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements. Applied Optics. 53(5), 816-829(2014).

【14】Campbell J F, Lin B, Nehrir A R et al. Binary phase shift keying on orthogonal carriers for multi-channel CO2 absorption measurements in the presence of thin clouds. Optics Express. 22(S6), A1634-A1640(2014).

【15】Lin B, Nehrir A R, Harrison F W et al. Atmospheric CO2 column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron. Optics Express. 23(11), A582-A593(2015).

【16】Bézy J L, Bensi P, Lin C C et al. ESA future earth observation explorer missions. Proceedings of SPIE. 7081, (2008).

【17】Durand Y, Caron J, Hélière A et al. LIDAR technology developments in support of ESA earth observation missions. Proceedings of SPIE. 10566, (2017).

【18】Durand Y, Caron J, Bensi P et al. A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar. [C]∥8th International Symposium on Tropospheric Profiling, October, 2009, The Netherlands. [S.l.: s.n.]. (2009).

【19】Amediek A, Fix A, Ehret G et al. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2. Atmospheric Measurement Techniques. 2(2), 755-772(2009).

【20】Liu J Q, Xie Y Y, Li S G et al. Research on spaceborne lidar for global atmospheric greenhouse gases detection. Infrared. 34(2), 22-26, 34(2013).
刘继桥, 谢杨易, 李世光 等. 用于全球大气温室气体探测的星载激光雷达研究. 红外. 34(2), 22-26, 34(2013).

【21】Xie Y Y, Liu J Q, Jiang J X et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration. Infrared and Laser Engineering. 43(1), 88-93(2014).
谢杨易, 刘继桥, 姜佳欣 等. 使CO2浓度测量误差减小的星载激光雷达波长优化. 红外与激光工程. 43(1), 88-93(2014).

【22】Shi C L. Research on air-borne IPDA lidar carbon dioxide column concentrations measurement. Beijing: University of Chinese Academy of Sciences. 17-26(2015).
史成龙. 机载积分路径差分吸收 (IPDA) 激光雷达测量大气CO2浓度研究. 北京: 中国科学院大学. 17-26(2015).

【23】Du J. Study of precise laser frequency control technology applied in spaceborne lidar. Beijing: University of Chinese Academy of Sciences. 106-114(2018).
杜鹃. 星载激光雷达激光频率精密控制技术研究. 北京: 中国科学院大学. 106-114(2018).

【24】Mu Y J, Li R, Wan Y et al. Stray light analysis and suppression for spaceborne lidar system. Chinese Journal of Lasers. 45(5), (2018).
穆永吉, 李蕊, 万渊 等. 星载激光雷达系统杂散光分析与抑制. 中国激光. 45(5), (2018).

【25】Chen X, Li S G, Zhu X L et al. Spectral purity measurement of single-frequency nanosecond laser pulse based on long path absorption cell. Chinese Journal of Lasers. 46(2), (2019).
陈晓, 李世光, 朱小磊 等. 基于长程气体吸收池的单频纳秒脉冲激光光谱纯度测量. 中国激光. 46(2), (2019).

【26】Wang J Y. Research on performance simulation and retrieval algorithm of space-borne lidar for measuring CO2 concentration. Qingdao: Ocean University of China. 17-25(2015).
王俊洋. 星载激光雷达探测大气二氧化碳浓度的模拟与反演研究. 青岛: 中国海洋大学. 17-25(2015).

【27】Ma H. Reliability demonstrating of space-borne greenhouse gases measurement using IPDA lidar. Hefei: University of Science and Technology of China. 39-48(2018).
马晖. 星载温室气体探测IPDA激光雷达指标论证. 合肥: 中国科学技术大学. 39-48(2018).

【28】Disney M I, Lewis P E, Bouvet M et al. Quantifying surface reflectivity for spaceborne lidar via two independent methods. IEEE Transactions on Geoscience and Remote Sensing. 47(9), 3262-3271(2009).

【29】Roy D P, Jin Y, Lewis P E et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment. 97(2), 137-162(2005).

【30】?ngstr?m A. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler. 11, 156-166(1929).

【31】Jiang W J, Shi J H and Xie W K. Electrooptical technology. 89-91(2014).
江文杰, 施建华, 谢文科. 光电技术. 89-91(2014).

【32】Grant W B. Effect of differential spectral reflectance on DIAL measurements using topographic targets. Applied Optics. 21(13), 2390-2394(1982).

【33】Levy R C, Remer L A, Kleidman R G et al. Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics. 10(21), 10399-10420(2010).

【34】Hill C, Gordon I E, Kochanov R V et al. HITRANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database. Journal of Quantitative Spectroscopy and Radiative Transfer. 177, 4-14(2016).

引用该论文

Juxin Yang,Yadan Zhu,Qin Wang,Lingbing Bu,Jiqiao Liu,Weibiao Chen. Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2019, 46(9): 0910001

杨巨鑫,朱亚丹,王勤,卜令兵,刘继桥,陈卫标. 地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达性能的影响[J]. 中国激光, 2019, 46(9): 0910001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF