首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:202803--1)

一种利用空谱联合特征的高光谱图像分类方法

A Hyperspectral Image Classification Method Based on Spectral-Spatial Features

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高光谱图像分类已被公认为是高光谱数据处理的基础性和挑战性任务,丰富的光谱信息和空间信息为有效描述和识别地表物质提供了契机。卷积神经网络(CNN)中的参数较多,为了避免过拟合问题,需要大量的训练样本。Log-Gabor滤波器可以有效地提取包括边缘和纹理在内的空间信息,降低CNN特征提取的难度。为了充分利用CNN和Log-Gabor滤波器的优点,提出了一种将Log-Gabor滤波器和CNN相结合的高光谱图像分类方法,并利用两个真实的高光谱图像数据集进行了对比实验。实验结果表明,所提方法比传统的支持向量机和CNN方法具有更高的分类精度。

Abstract

Hyperspectral image classification has been recognized as a basic and challenging task in hyperspectral data processing, wherein the rich spectral and spatial information provides an opportunity for the effective description and identification of the surface materials of the earth. There are many parameters in convolutional neural network (CNN). In order to avoid overfitting problem, a large number of training samples are needed in CNN. In addition, the Log-Gabor filtering can effectively extract spatial information, such as the edge and texture, which reduces the difficulty of CNN feature extraction. To leverage the advantages of CNN and Log-Gabor filtering, a hyperspectral image classification method that combines the Log-Gabor filtering and CNN is proposed herein, and two real hyperspectral image datasets are used for comparison experiments. Experimental results show that the proposed method has a higher classification accuracy than that of the traditional support vector machine and CNN.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751

DOI:10.3788/LOP57.202803

所属栏目:遥感与传感器

基金项目:国家自然科学基金、江西省教育厅科技计划、井冈山大学自然科学科研项目;

收稿日期:2020-01-16

修改稿日期:2020-03-09

网络出版日期:2020-10-01

作者单位    点击查看

付青:井冈山大学电子与信息工程学院, 江西 吉安 343009江西省农作物生长物联网技术工程实验室, 江西 吉安 343009同济大学测绘与地理信息学院, 上海 200092
郭晨:井冈山大学电子与信息工程学院, 江西 吉安 343009江西省农作物生长物联网技术工程实验室, 江西 吉安 343009
罗文浪:井冈山大学电子与信息工程学院, 江西 吉安 343009江西省农作物生长物联网技术工程实验室, 江西 吉安 343009

联系人作者:郭晨(fvqing@163.com)

备注:国家自然科学基金、江西省教育厅科技计划、井冈山大学自然科学科研项目;

【1】H?rig B, Kühn F, Oschütz F, et al. HyMap hyperspectral remote sensing to detect hydrocarbons [J]. International Journal of Remote Sensing. 2001, 22(8): 1413-1422.

【2】Butz C, Grosjean M, Fischer D, et al. Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments [J]. Journal of Applied Remote Sensing. 2015, 9(1): 096031.

【3】Qin Q M, Zhang Z L, Chen L, et al. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection [J]. Journal of Applied Remote Sensing. 2016, 10(1): 016017.

【4】Jin X, Jie L, Wang S, et al. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field [J]. Remote Sensing. 2018, 10(3): 395.

【5】Goetz A F, Vane G, Solomon J E, et al. Imaging spectrometry for Earth remote sensing [J]. Science. 1985, 228(4704): 1147-1153.

【6】Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral remote sensing data analysis and future challenges [J]. IEEE Geoscience and Remote Sensing Magazine. 2013, 1(2): 6-36.

【7】Fauvel M, Tarabalka Y, Benediktsson J A, et al. Advances in spectral-spatial classification of hyperspectral images [J]. Proceedings of the IEEE. 2013, 101(3): 652-675.

【8】Jia S, Hu J, Xie Y, et al. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(6): 3174-3187.

【9】Hughes G. On the mean accuracy of statistical pattern recognizers [J]. IEEE Transactions on Information Theory. 1968, 14(1): 55-63.

【10】Gong M G, Zhang M Y, Yuan Y. Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(1): 544-557.

【11】Chen Y S, Jiang H L, Li C Y, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(10): 6232-6251.

【12】Yuan Y, Lin J Z, Wang Q. Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization [J]. IEEE Transactions on Cybernetics. 2016, 46(12): 2966-2977.

【13】Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification: earth monitoring with statistical learning methods [J]. IEEE Signal Processing Magazine. 2014, 31(1): 45-54.

【14】Wang Q, Meng Z T, Li X L. Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters. 2017, 14(11): 2077-2081.

【15】Makantasis K, Doulamis A D, Doulamis N D, et al. Tensor-based classification models for hyperspectral data analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2018, 56(12): 6884-6898.

【16】Ghamisi P, Plaza J, Chen Y S, et al. Advanced spectral classifiers for hyperspectral images: a review [J]. IEEE Geoscience and Remote Sensing Magazine. 2017, 5(1): 8-32.

【17】Zhang L P, Li J Y. Development and prospect of sparse representation-based hyperspectral image processing and analysis [J]. Journal of Remote Sensing. 2016, 20(5): 1091-1101.
张良培, 李家艺. 高光谱图像稀疏信息处理综述与展望 [J]. 遥感学报. 2016, 20(5): 1091-1101.

【18】Huang H, He K, Zheng X L, et al. Spatial-spectral feature extraction of hyperspectral image based on deep learning [J]. Laser & Optoelectronics Progress. 2017, 54(10): 101001.
黄鸿, 何凯, 郑新磊, 等. 基于深度学习的高光谱图像空-谱联合特征提取 [J]. 激光与光电子学进展. 2017, 54(10): 101001.

【19】Ji L, Zhang X, Zhang L M, et al. Hyperspectral image classification algorithm based on space-spectral weighted nearest neighbor [J]. Laser & Optoelectronics Progress. 2020, 57(6): 061013.
纪磊, 张欣, 张丽梅, 等. 基于空谱加权近邻的高光谱图像分类算法 [J]. 激光与光电子学进展. 2020, 57(6): 061013.

【20】Qu H C, Guo Y, Wang Y Y. A new spectral-spatial joint method of hyperspectral image classification [J]. Science of Surveying and Mapping. 2019, 44(8): 82-90.
曲海成, 郭月, 王媛媛. 一种新的空谱联合高光谱图像分类方法 [J]. 测绘科学. 2019, 44(8): 82-90.

【21】Li F Y, Huo H T, Li J, et al. Hyperspectral image classification via multiple-feature-based improved sparse representation [J]. Acta Optica Sinica. 2019, 39(5): 0528004.
李非燕, 霍宏涛, 李静, 等. 基于多特征和改进稀疏表示的高光谱图像分类 [J]. 光学学报. 2019, 39(5): 0528004.

【22】Ren Z W, Wu L D. Spectral-spatial classification for hyperspectral imagery based on intrinsic image decomposition [J]. Spacecraft Recovery & Remote Sensing. 2019, 40(3): 111-120.
任智伟, 吴玲达. 基于本征图像分解的高光谱图像空谱联合分类 [J]. 航天返回与遥感. 2019, 40(3): 111-120.
Ren Z W, Wu L D. Spectral-spatial classification for hyperspectral imagery based on intrinsic image decomposition [J]. Spacecraft Recovery & Remote Sensing. 2019, 40(3): 111-120.
任智伟, 吴玲达. 基于本征图像分解的高光谱图像空谱联合分类 [J]. 航天返回与遥感. 2019, 40(3): 111-120.

【23】Zhi L, Yu X C, Zou B, et al. A multi-layer binary pattern based method for hyperspectral imagery classification using combined spatial-spectral characteristics [J]. Geomatics and Information Science of Wuhan University. 2019, 44(11): 1659-1666.
职露, 余旭初, 邹滨, 等. 多层级二值模式的高光谱影像空-谱分类 [J]. 武汉大学学报·信息科学版. 2019, 44(11): 1659-1666.

【24】Hu W, Huang Y Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification Journal of Sensors[J]. 0, 2015(2): 1-12.

【25】Yue J, Zhao W Z, Mao S J, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks [J]. Remote Sensing Letters. 2015, 6(6): 468-477.

【26】Gabor D. Theory of communication. Part 1: the analysis of information [J]. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering. 1946, 93(26): 429-441.

【27】Arróspide J, Salgado L. Log-Gabor filters for image-based vehicle verification [J]. IEEE Transactions on Image Processing. 2013, 22(6): 2286-2295.

引用该论文

Fu Qing,Guo Chen,Luo Wenlang. A Hyperspectral Image Classification Method Based on Spectral-Spatial Features[J]. Laser & Optoelectronics Progress, 2020, 57(20): 202803

付青,郭晨,罗文浪. 一种利用空谱联合特征的高光谱图像分类方法[J]. 激光与光电子学进展, 2020, 57(20): 202803

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF